4.6 Article

WAAM process for metal block structure parts based on mixed heat input

期刊

出版社

SPRINGER LONDON LTD
DOI: 10.1007/s00170-021-06654-x

关键词

Robotics; WAAM; Metal structure components; Heat input control

资金

  1. China Scholarship Council [201708200016]

向作者/读者索取更多资源

This paper introduces a novel process planning method called mixed heat input (MHI) strategy to minimize defects like voids and collapse in fabricating large block structure components, while maintaining high manufacturing efficiency. This method applies different heat input conditions at various layer positions to achieve defect-free components.
Additive manufacturing based on robotic welding is used for the manufacture of metal parts by applying an arc as a heat source and wire as feedstock. The process is known as wire arc additive manufacturing (WAAM). However, the current WAAM process has a limitation in fabricating block structure components with high geometry accuracy and consistent welding due to the process complexity and the lack of appropriate process planning methods. Furthermore, common defects such as voids, gaps, and collapse decrease the mechanical properties of the final product. This paper presents a novel process planning method based on a mixed heat input (MHI) strategy to minimize voids and collapse defects that occur in fabricating large block structure components while maintaining a high manufacturing efficiency. By separating each layer into boundary layers and inner layers, the MHI method applies various heat input conditions at different positions of the layer allowing the construction of defect-free components. The performance of this method is shown in a validation study considered as the fabrication of a regular structure component. To evaluate the mechanical properties of the deposited sample, the hardness and microstructure are reported and compared with the conventional WAAM process. Then, the MHI strategy is applied to the manufacturing of a large block structure component with a similar structure as the validation study. Furthermore, the robustness of the proposed MHI strategy in fabricating complex geometric parts is evaluated by two case studies. The results show that such strategy succeeds in achieving high production efficiency and quality simultaneously.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据