4.7 Article

Roflupram, a novel phosphodiesterase 4 inhibitor, inhibits lipopolysaccharide-induced neuroinflammatory responses through activation of the AMPK/Sirt1 pathway

期刊

INTERNATIONAL IMMUNOPHARMACOLOGY
卷 90, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.intimp.2020.107176

关键词

Phosphodiesterase 4; Roflupram; Neuroinflammation; Microglia; AMPK; Sirt1

资金

  1. National Natural Science Foundation of China [81773698, 81974501]
  2. Science and Technology Program of Guangzhou [202002030494]
  3. Key-Area Research and Development Program of Guangdong Province [2018B030334001]
  4. Program for Changjiang Scholars and Innovative Research Team in University [IRT_16R37]

向作者/读者索取更多资源

ROF attenuates LPS-induced neuroinflammatory responses in microglia by activating the AMPK/Sirt1 pathway, leading to reduced production of pro-inflammatory factors and improved cognitive function.
Roflupram (ROF) is a novel phosphodiesterase 4 inhibitor. We previously found that ROF suppressed the production of pro-inflammatory factors in microglial cells; however, the underlying mechanisms are largely unknown. The present study aimed to elucidate the underlying molecular mechanisms of the antineuroinflammatory effects of ROF in lipopolysaccharide (LPS)-activated microglial cells and LPS-challenged mice. Treatment with ROF suppressed LPS-induced expression of interleukin (IL)-6 and tumor necrosis factor (TNF)-alpha in BV-2 microglia cell line. Immunofluorescence and Western blotting analysis showed that ROF significantly inhibited the activation of microglia, as evidenced by decreased expression of ionized calcium binding adaptor molecule-1 (Iba1). Similar results were obtained in primary cultured microglial cells. ROF induced the phosphorylation of AMP-activated protein kinase (AMPK) and the expression of Sirtuin 1 (Sirt1). Interestingly, the AMPK inhibitor, compound C, blocked the role of ROF in both the phosphorylation of AMPK and the expression of Sirt1 in BV-2 cells stimulated with LPS. More importantly, the Sirt1 inhibitor, EX527, abolished the inhibitory role of ROF on the production of pro-inflammatory factors, and reactivated BV-2 cells. In mice challenged with LPS, ROF improved cognition and decreased the levels of IL-6 and TNF-alpha in both the cortex and hippocampus. In contrast, EX527 weakened the effects of ROF on cognitive enhancement and reduction of pro-inflammatory factors in the cortex and hippocampus. Furthermore, EX527 blocked the inhibitory role of ROF in the activation of microglial cells in both the hippocampus and cortex. Taken together, our results indicated that ROF attenuated LPS-induced neuroinflammatory responses in microglia, and the AMPK/Sirt1 pathway is essential for the anti-inflammatory effects of ROF.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据