4.6 Review

Are antibacterial effects of non-antibiotic drugs random or purposeful because of a common evolutionary origin of bacterial and mammalian targets?

期刊

INFECTION
卷 49, 期 4, 页码 569-589

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s15010-020-01547-9

关键词

Common ancestry; Conserved targets; Reversion of resistance; Virulence attenuation; Synergy

资金

  1. Projekt DEAL

向作者/读者索取更多资源

This article summarizes the interaction between non-antibiotics and bacterial targets, showing that these non-antibiotics can synergize with antibiotics, reverse resistance, or attenuate bacterial virulence.
Purpose Advances in structural biology, genetics, bioinformatics, etc. resulted in the availability of an enormous pool of information enabling the analysis of the ancestry of pro- and eukaryotic genes and proteins. Methods This review summarizes findings of structural and/or functional homologies of pro- and eukaryotic enzymes catalysing analogous biological reactions because of their highly conserved active centres so that non-antibiotics interacted with bacterial targets. Results Protease inhibitors such as staurosporine or camostat inhibited bacterial serine/threonine or serine/tyrosine protein kinases, serine/threonine phosphatases, and serine/threonine kinases, to which penicillin-binding-proteins are linked, so that these drugs synergized with beta-lactams, reverted aminoglycoside-resistance and attenuated bacterial virulence. Calcium antagonists such as nitrendipine or verapamil blocked not only prokaryotic ion channels but interacted with negatively charged bacterial cell membranes thus disrupting membrane energetics and inducing membrane stress response resulting in inhibition of P-glycoprotein such as bacterial pumps thus improving anti-mycobacterial activities of rifampicin, tetracycline, fluoroquinolones, bedaquilin and imipenem-activity against Acinetobacter spp. Ciclosporine and tacrolimus attenuated bacterial virulence. ACE-inhibitors like captopril interacted with metallo-beta-lactamases thus reverting carbapenem-resistance; prokaryotic carbonic anhydrases were inhibited as well resulting in growth impairment. In general, non-antibiotics exerted weak antibacterial activities on their own but synergized with antibiotics, and/or reverted resistance and/or attenuated virulence. Conclusions Data summarized in this review support the theory that prokaryotic proteins represent targets for non-antibiotics because of a common evolutionary origin of bacterial- and mammalian targets resulting in highly conserved active centres of both, pro- and eukaryotic proteins with which the non-antibiotics interact and exert antibacterial actions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据