4.7 Article

A Fundamental Storage-Communication Tradeoff for Distributed Computing With Straggling Nodes

期刊

IEEE TRANSACTIONS ON COMMUNICATIONS
卷 68, 期 12, 页码 7311-7327

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TCOMM.2020.3020549

关键词

Computational modeling; Numerical models; Servers; Electronic mail; Personal digital assistants; Complexity theory; Distributed computing; storage; communication; straggler; MapReduce; placement delivery array

资金

  1. ERC [715111]
  2. National Natural Science Foundation of China [61941106]

向作者/读者索取更多资源

Placement delivery arrays for distributed computing (Comp-PDAs) have recently been proposed as a framework to construct universal computing schemes for MapReduce-like systems. In this work, we extend this concept to systems with straggling nodes, i.e., to systems where a subset of the nodes cannot accomplish the assigned map computations in due time. Unlike most previous works that focused on computing linear functions, our results are universal and apply for arbitrary map and reduce functions. Our contributions are as follows. Firstly, we show how to construct a universal coded computing scheme for MapReduce-like systems with straggling nodes from any given Comp-PDA. We also characterize the storage and communication loads of the resulting scheme in terms of the Comp-PDA parameters. Then, we prove an information-theoretic converse bound on the storage-communication (SC) tradeoff achieved by universal computing schemes with straggling nodes. We show that the information-theoretic bound matches the performance achieved by the coded computing schemes with straggling nodes corresponding to the Maddah-Ali and Niesen (MAN) PDAs, i.e., to the Comp-PDAs describing Maddah-Ali and Niesen's coded caching scheme. Interestingly, the MAN-PDAs are optimal for any number of straggling nodes. This implies that the map phase of optimal coded computing schemes does not need to be adapted to the number of stragglers in the system. We show that the points that lie exactly on the fundamental SC tradeoff cannot be achieved with Comp-PDAs that require smaller number of files than the MAN-PDAs. This is however possible for some of the points that lie close to the SC tradeoff. For these latter points, the decrease in the requested number of files can be exponential in the number of nodes of the system. We also model the total execution time, and numerically show that the active set size should be chosen to balance the duration of the map phase and the durations of the shuffle and reduce phases.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据