4.6 Article

Stable isotopes of water reveal differences in plant - soil water relationships across northern environments

期刊

HYDROLOGICAL PROCESSES
卷 35, 期 1, 页码 -

出版社

WILEY
DOI: 10.1002/hyp.14023

关键词

cold regions; critical zone; northern environments; stable isotopes; soil isotopes; xylem isotopes

向作者/读者索取更多资源

Comparing stable isotopes of xylem water and soil water in northern/cold regions, it was found that xylem water is depleted compared to soil waters, with a strong overlap between isotopes in xylem water from angiosperms and soil water, but not in gymnosperms. The composition of xylem water can be better explained by considering soil water composition over longer antecedent periods.
We compared stable isotopes of water in plant stem (xylem) water and soil collected over a complete growing season from five well-known long-term study sites in northern/cold regions. These spanned a decreasing temperature gradient from Bruntland Burn (Scotland), Dorset (Canadian Shield), Dry Creek (USA), Krycklan (Sweden), to Wolf Creek (northern Canada). Xylem water was isotopically depleted compared to soil waters, most notably for deuterium. The degree to which potential soil water sources could explain the isotopic composition of xylem water was assessed quantitatively using overlapping polygons to enclose respective data sets when plotted in dual isotope space. At most sites isotopes in xylem water from angiosperms showed a strong overlap with soil water; this was not the case for gymnosperms. In most cases, xylem water composition on a given sampling day could be better explained if soil water composition was considered over longer antecedent periods spanning many months. Xylem water at most sites was usually most dissimilar to soil water in drier summer months, although sites differed in the sequence of change. Open questions remain on why a significant proportion of isotopically depleted water in plant xylem cannot be explained by soil water sources, particularly for gymnosperms. It is recommended that future research focuses on the potential for fractionation to affect water uptake at the soil-root interface, both through effects of exchange between the vapour and liquid phases of soil water and the effects of mycorrhizal interactions. Additionally, in cold regions, evaporation and diffusion of xylem water in winter may be an important process.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据