4.6 Article

Alternative splicing in normal and pathological human placentas is correlated to genetic variants

期刊

HUMAN GENETICS
卷 140, 期 5, 页码 827-848

出版社

SPRINGER
DOI: 10.1007/s00439-020-02248-x

关键词

-

资金

  1. European Union's Horizon 2020 research and innovation program under Marie Sklodowska-Curie Actions Innovative Training Network (H2020-MSCA-ITN 2017) [765274]
  2. INSERM
  3. Angers University Hospital, France

向作者/读者索取更多资源

The study reveals that alternative splicing is an important feature in placental diseases, affecting the expression of many genes, some of which are related to pregnancy and brain diseases. Additionally, alternative splicing variations in the placenta can be detected at the individual level, showing significant differences between different placentas.
Two major obstetric diseases, preeclampsia (PE), a pregnancy-induced endothelial dysfunction leading to hypertension and proteinuria, and intra-uterine growth-restriction (IUGR), a failure of the fetus to acquire its normal growth, are generally triggered by placental dysfunction. Many studies have evaluated gene expression deregulations in these diseases, but none has tackled systematically the role of alternative splicing. In the present study, we show that alternative splicing is an essential feature of placental diseases, affecting 1060 and 1409 genes in PE vs controls and IUGR vs controls, respectively, many of those involved in placental function. While in IUGR placentas, alternative splicing affects genes specifically related to pregnancy, in preeclamptic placentas, it impacts a mix of genes related to pregnancy and brain diseases. Also, alternative splicing variations can be detected at the individual level as sharp splicing differences between different placentas. We correlate these variations with genetic variants to define splicing Quantitative Trait Loci (sQTL) in the subset of the 48 genes the most strongly alternatively spliced in placental diseases. We show that alternative splicing is at least partly piloted by genetic variants located either in cis (52 QTL identified) or in trans (52 QTL identified). In particular, we found four chromosomal regions that impact the splicing of genes in the placenta. The present work provides a new vision of placental gene expression regulation that warrants further studies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据