4.7 Article

BMI as a Modifiable Risk Factor for Type 2 Diabetes: Refining and Understanding Causal Estimates Using Mendelian Randomization

期刊

DIABETES
卷 65, 期 10, 页码 3002-3007

出版社

AMER DIABETES ASSOC
DOI: 10.2337/db16-0418

关键词

-

资金

  1. Medical Research Council [MC_UU_12013/1, MC_UU_12013/2, MC_UU_12013/3]
  2. University of Bristol
  3. Cancer Research UK [C18281/A19169]
  4. Wellcome Trust [100114]
  5. Medical Research Council Methodology Research Fellowship [MR/N501906/1]
  6. British Heart Foundation [RG/13/13/30194, RG/08/014/24067] Funding Source: researchfish
  7. Cancer Research UK [19169] Funding Source: researchfish
  8. Medical Research Council [MC_UU_12013/3, MR/L003120/1, MR/N501906/1, G0800270, MC_UU_12013/1, MC_UU_00002/3, MC_UP_1302/2, MC_UU_00002/7] Funding Source: researchfish
  9. National Institute for Health Research [NF-SI-0512-10165] Funding Source: researchfish
  10. MRC [MC_UU_12013/1, MC_UU_12013/3, MR/L003120/1, MC_UP_1302/2, MC_UU_00002/3, G0800270, MC_UU_00002/7] Funding Source: UKRI

向作者/读者索取更多资源

This study focused on resolving the relationship between BMI and type 2 diabetes. The availability of multiple variants associated with BMI offers a new chance to resolve the true causal effect of BMI on type 2 diabetes; however, the properties of these associations and their validity as genetic instruments need to be considered alongside established and new methods for undertaking Mendelian randomization (MR). We explore the potential for pleiotropic genetic variants to generate bias, revise existing estimates, and illustrate value in new analysis methods. A two-sample MR approach with 96 genetic variants was used with three different analysis methods, two of which (MR-Egger and the weighted median) have been developed specifically to address problems of invalid instrumental variables. We estimate an odds ratio for type 2 diabetes per unit increase in BMI (kg/m(2)) of between 1.19 and 1.38, with the most stable estimate using all instruments and a weighted median approach (1.26 [95% CI 1.17, 1.34]). TCF7L2(rs7903146) was identified as a complex effect or pleiotropic instrument, and removal of this variant resulted in convergence of causal effect estimates from different causal analysis methods. This indicated the potential for pleiotropy to affect estimates and differences in performance of alternative analytical methods. In a real type 2 diabetes-focused example, this study demonstrates the potential impact of invalid instruments on causal effect estimates and the potential for new approaches to mitigate the bias caused.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据