4.7 Article

Linking model design and application for transdisciplinary approaches in social-ecological systems

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.gloenvcha.2020.102201

关键词

Dynamic modeling; Knowledge co-production; Mountain social-ecological systems; Mutual learning; Transdisciplinarity; Science and technology studies

资金

  1. US National Science Foundation through the Mountain Sentinels Research Coordination Network (NSF) [1414106]
  2. Swiss National Science Foundation through MtnPaths - Pathways for global change adaptation of mountain socio-ecological systems [20521L_169916]
  3. Center for Collaborative Conservation at Colorado State University

向作者/读者索取更多资源

This study analyzed dynamic models of mountain SES to address global environmental challenges, finding that most models are participatory with low direct outreach to decision makers. SES models often lack representation of social datasets and decision support is higher in models with diverse stakeholders.
As global environmental change continues to accelerate and intensify, science and society are turning to transdisciplinary approaches to facilitate transitions to sustainability. Modeling is increasingly used as a technological tool to improve our understanding of social-ecological systems (SES), encourage collaboration and learning, and facilitate decision-making. This study improves our understanding of how SES models are designed and applied to address the rising challenges of global environmental change, using mountains as a representative system. We analyzed 74 peer-reviewed papers describing dynamic models of mountain SES, evaluating them according to characteristics such as the model purpose, data and model type, level of stakeholder involvement, and spatial extent/resolution. Slightly more than half the models in our analysis were participatory, yet only 21.6% of papers demonstrated any direct outreach to decision makers. We found that SES models tend to under-represent social datasets, with ethnographic data rarely incorporated. Modeling efforts in conditions of higher stakeholder diversity tend to have higher rates of decision support compared to situations where stakeholder diversity is absent or not addressed. We discuss our results through the lens of appropriate technology, drawing on the concepts of boundary objects and scalar devices from Science and Technology Studies. We propose four guiding principles to facilitate the development of SES models as appropriate technology for transdisciplinary applications: (1) increase diversity of stakeholders in SES model design and application for improved collaboration; (2) balance power dynamics among stakeholders by incorporating diverse knowledge and data types; (3) promote flexibility in model design; and (4) bridge gaps in decision support, learning, and communication. Creating SES models that are appropriate technology for transdisciplinary applications will require advanced planning, increased funding for and attention to the role of diverse data and knowledge, and stronger partnerships across disciplinary divides. Highly contextualized participatory modeling that embraces diversity in both data and actors appears poised to make strong contributions to the world's most pressing environmental challenges.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据