4.7 Article

Depolymerization of sodium alginate in saline solutions via ultrasonic treatments: A rheological characterization

期刊

FOOD HYDROCOLLOIDS
卷 109, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.foodhyd.2020.106128

关键词

Sodium alginate; Ultrasonic cavitation; Depolymerization; Rheology; Concentration regimes; Flow activation energy

向作者/读者索取更多资源

The molecular mass of two sodium alginates with the same composition but different chain length is reduced via a simple ultrasonic treatment and monitored by rheological measurements. The polymer molecular mass decreases until a lower limiting value of 100 kg/mol is reached, with the degradation occurring via a mid-point-chain kinetic consisting into the breakage of the glycosidic bonds towards the middle of the macromolecules. The evaluation of the concentration regimes (i.e. viscosity dependence upon the polymer concentration) demonstrates that short chains are characterized by higher critical concentrations and lower scaling factors, most likely owing to their poor ability to form entanglements. Nevertheless, the typical behaviour of neutral polymer in 0 solvent is observed independently of the alginate molecular mass. The viscosity temperature dependence of the investigated solutions obeys Arrhenius law in a wide temperature range. Additionally, the flow activation energy is observed to follow a linear relationship with the polymer molecular mass with values of 26.2 kJ/mol for the longest chains and 18.2 kJ/mol for the shortest ones. Consequently, ultrasonic treatment is here proved to be extremely efficient to reduce the molecular mass of alginate, thus representing a fast, safe and cost-effective approach to obtain materials with tailored properties.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据