4.7 Article

Polymer coated fat crystals as oil structuring agents: Fabrication and oil-structuring properties

期刊

FOOD HYDROCOLLOIDS
卷 115, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.foodhyd.2021.106623

关键词

-

资金

  1. Ministry of Higher Education Malaysia
  2. Universiti Malaysia Sabah
  3. Hercules foundation [AUGE-09-029]

向作者/读者索取更多资源

The use of GTA as a stabilizer in oil-in-water emulsions to form fat capsules played a key role in the preparation of composite oleogels and particle-based oleogels. The fat capsules exhibited higher shear modulus in the oleogels, demonstrating excellent structural properties.
Oleogel has attracted the interest of food scientists and the food industry as an interesting alternative for solid fat in food products. Certain hydrophilic polymers, such as gelatin (GTA), are known to form gel structures in water, but fail to structure apolar solvents due to incompatibility. The hydrophilic polymers can only be introduced into an apolar solvent using an indirect approach. In our approach, GTA acted as a stabilizer of oil-in-water emulsions. During emulsification, GTA adsorbed at the interface, forming a polymer protective layer. Upon cooling, crystallisation of fully hydrogenated rapeseed oil (FHRO), as the oil droplets, fixed the polymer layer onto the droplets. Subsequently, the crystallised fat droplets were separated from the continuous water phase through creaming, and then subjected to drying. The dried fat droplets, fat capsules, exhibited spherical shape with D(3,2) at 6.7 +/- 3.3 mu m based on the microscopy and laser light scattering analyses. Interestingly, confocal laser scanning microscopy (CLSM) confirmed the location of the GTA layer on the surface of the fat capsules. Moreover, diffraction and thermal analyses showed similar properties between FHRO and GTA fat capsules, thus indicating that FHRO independently crystallised without being affected by the fabrication techniques and GTA. Subsequently, the fat capsules were tested as an oil structuring agent by employing two different approaches to form composite oleogels and particle-based oleogels. The amplitude sweep test showed that all oleogels behaved in a solid-like manner. The shear modulus of oleogels prepared from fat capsules was higher than the reference oleogel, regardless of the preparation approach. Electron microscopy confirmed the formation of composite oleogel and particle-based oleogels by the fat capsules as the structuring building blocks in the respective oleogels. In the oleogels, GTA acted as a filler in GTA-oleogel (GTA1) and as a surface polymer that interconnected the fat capsules in particle-based oleogel (GTA2) and particle-based added water oleogel (GTA3). Ultimately, we have shown the formation of FHRO coated with hydrocolloid, which can potentially act as a functional material for structuration and delivery vehicles.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据