4.7 Article

Alignment of the ATLAS Inner Detector in Run 2

期刊

EUROPEAN PHYSICAL JOURNAL C
卷 80, 期 12, 页码 -

出版社

SPRINGER
DOI: 10.1140/epjc/s10052-020-08700-6

关键词

-

资金

  1. ANPCyT, Argentina
  2. YerPhI, Armenia
  3. ARC, Australia
  4. BMWFW, Austria
  5. FWF, Austria
  6. ANAS, Azerbaijan
  7. SSTC, Belarus
  8. CNPq, Brazil
  9. FAPESP, Brazil
  10. NSERC, Canada
  11. NRC, Canada
  12. CFI, Canada
  13. CERN
  14. CONICYT, Chile
  15. CAS, China
  16. MOST, China
  17. NSFC, China
  18. COLCIENCIAS, Colombia
  19. MSMT CR, Czech Republic
  20. MPO CR, Czech Republic
  21. VSC CR, Czech Republic
  22. DNRF, Denmark
  23. DNSRC, Denmark
  24. IN2P3-CNRS, France
  25. CEA-DRF/IRFU, France
  26. SRNSFG, Georgia
  27. BMB, Germany
  28. HGF, Germany
  29. MPG, Germany
  30. GSRT, Greece
  31. RGC, China
  32. Hong Kong SAR, China
  33. ISF, Israel
  34. Benoziyo Center, Israel
  35. INFN, Italy
  36. MEXT, Japan
  37. JSPS, Japan
  38. CNRST, Morocco
  39. NWO, Netherlands
  40. RCN, Norway
  41. MNiSW, Poland
  42. NCN, Poland
  43. FCT, Portugal
  44. MNE/IFA, Romania
  45. MES of Russia, Russia Federation
  46. NRC KI, Russia Federation
  47. JINR
  48. MESTD, Serbia
  49. MSSR, Slovakia
  50. ARRS, Slovenia
  51. MIZS, Slovenia
  52. DST/NRF, South Africa
  53. MINECO, Spain
  54. SRC, Sweden
  55. Wallenberg Foundation, Sweden
  56. SERI, Switzerland
  57. SNSF, Switzerland
  58. Canton of Bern, Switzerland
  59. Canton of Geneva, Switzerland
  60. MOST, Taiwan
  61. TAEK, Turkey
  62. STFC, United Kingdom
  63. DOE, USA
  64. NSF, USA
  65. BCKDF, Canada
  66. CANARIE, Canada
  67. Compute Canada, Canada
  68. ERC, European Union
  69. ERDF, European Union
  70. Horizon 2020, European Union
  71. Marie Sklodowska-Curie Actions, European Union
  72. COST, European Union
  73. Investissements d'Avenir Labex, France
  74. Investissements d'Avenir Idex, France
  75. ANR, France
  76. DFG, Germany
  77. AvH Foundation, Germany
  78. EU-ESF, Greece
  79. Greek NSRF, Greece
  80. BSF-NSF, Israel
  81. GIF, Israel
  82. CERCA Programme Generalitat de Catalunya, Spain
  83. PROMETEO Programme Generalitat Valenciana, Spain
  84. Goran Gustafssons Stiftelse, Sweden
  85. Royal Society, United Kingdom
  86. Leverhulme Trust, United Kingdom
  87. CRC, Canada
  88. Herakleitos programme
  89. Thales programme
  90. Aristeia programme
  91. STFC [ST/N000331/1, ST/T000414/1, ST/P002439/1, ST/N000277/1, ST/N000234/1, ST/S000747/1, ST/S00095X/1, ST/S000879/1] Funding Source: UKRI

向作者/读者索取更多资源

The performance of the ATLAS Inner Detector alignment has been studied using pp collision data at v s = 13 TeV collected by the ATLAS experiment during Run 2 (2015-2018) of the Large Hadron Collider (LHC). The goal of the detector alignment is to determine the detector geometry as accurately as possible and correct for time-dependent movements. The Inner Detector alignment is based on the minimization of track-hit residuals in a sequence of hierarchical levels, from global mechanical assembly structures to local sensors. Subsequent levels have increasing numbers of degrees of freedom; in total there are almost 750,000. The alignment determines detector geometry on both short and long timescales, where short timescales describe movementswithin anLHCfill. The performance and possible track parameter biases originating from systematic detector deformations are evaluated. Momentum biases are studied using resonances decaying to muons or to electrons. The residual sagitta bias and momentum scale bias after alignment are reduced to less than similar to 0.1 TeV-1 and 0.9 x 10(-3), respectively. Impact parameter biases are also evaluated using tracks within jets.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据