4.5 Article

Doxycycline reverses cognitive impairment, neuroinflammation and oxidative imbalance induced by D-amphetamine mania model in mice: A promising drug repurposing for bipolar disorder treatment?

期刊

EUROPEAN NEUROPSYCHOPHARMACOLOGY
卷 42, 期 -, 页码 57-74

出版社

ELSEVIER
DOI: 10.1016/j.euroneuro.2020.11.007

关键词

Bipolar disorder; mania; doxycycline; D-amphetamine; cognitive impairment; neuroinflammation; microglial activation; oxidative stress

资金

  1. Brazilian Institution CAPES
  2. Brazilian Institution FUNCAP
  3. Brazilian Institution CNPq

向作者/读者索取更多资源

The study demonstrates that doxycycline (DOXY) alone or in combination with lithium can reverse cognitive impairment and neuroinflammation induced by the d-amphetamine model in mice, showing promising therapeutic effects for treating bipolar disorder.
Immune-inflammatory mechanisms are involved in the pathophysiology of bipolar disorder. Tetracyclines present neuroprotective actions based on their anti-inflammatory and microglia suppressant effects. Doxycycline (DOXY) is a tetracycline that demonstrates a better usage profile with protective actions against inflammation and CNS injury. Here, we investigated the effects of DOXY against behavioral, neuroinflammatory, and pro-oxidative changes induced by the d-amphetamine mania model. Adult mice were given d-amphetamine 2.0 mg/kg or saline for 14 days. Between days 8 and 14, received lithium, DOXY (25 or 50 mg/kg), or their combination (lithium + DOXY) on both doses. We collected the brain areas prefrontal cortex (PFC), hippocampus, and amygdala to evaluate inflammatory and oxidative alterations. D-amphetamine induced hyperlocomotion and impairment in recognition and working memory. Lithium reversed hyperlocomotion but could not restore cognitive alterations. DOXY alone (at both doses) or combined with lithium reversed d-amphetamine-induced cognitive changes. DOXY, better than lithium, reversed the d-amphetamine-induced rise in TNF alpha, MPO, and lipid peroxidation. DOXY reduced the hippocampal expression of Iba1 (a marker of microglial activation), inducible nitric oxide synthase (iNOS), and nitrite. Combined with lithium, DOXY increased the phosphorylated (inactivated) form of GSK3 /3 (Ser9). Therefore, DOXY alone or combined with lithium reversed cognitive impairment and neuroinflammation induced by the mice's d-amphetamine model. This study points to DOXY as a promising adjunctive tool for bipolar disorder treatment focused on cognition and neuroimmune changes. Our data provide the first rationale for clinical trials investigating DOXY therapeutic actions in bipolar disorder mania. (c) 2020 Elsevier B.V. and ECNP. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据