4.7 Article

Validation of FDG-PET datasets of normal controls for the extraction of SPM-based brain metabolism maps

出版社

SPRINGER
DOI: 10.1007/s00259-020-05175-1

关键词

Fluorodeoxyglucose; PET; Brain hypometabolism; Healthy control dataset; Voxel-wise analysis; SPM; Dementia; Neurodegeneration

资金

  1. Italian Ministry of Health [NET -2011-02346784]
  2. Italian Medicines Agency
  3. Alzheimer's Disease Neuroimaging Initiative (ADNI) (National Institutes of Health) [U01 AG024904]
  4. DOD ADNI (Department of Defence) [W81XWH-12-2-0012]
  5. National Institute on Aging
  6. National Institute of Biomedical Imaging and Bioengineering
  7. AbbVie
  8. Alzheimer's Association
  9. Alzheimer's Drug Discovery Foundation
  10. Araclon Biotech
  11. BioClinica, Inc.
  12. Biogen
  13. Bristol-Myers Squibb Company
  14. CereSpir, Inc.
  15. Cogstate
  16. Eisai Inc.
  17. Elan Pharmaceuticals, Inc.
  18. Eli Lilly and Company
  19. EuroImmun
  20. F. Hoffmann-La Roche Ltd.
  21. Genentech, Inc.
  22. Fujirebio
  23. GE Healthcare
  24. IXICO Ltd.
  25. Janssen Alzheimer Immunotherapy Research & Development, LLC.
  26. Johnson & Johnson Pharmaceutical Research & Development LLC.
  27. Lumosity
  28. Lundbeck
  29. Merck Co., Inc.
  30. Meso Scale Diagnostics, LLC.
  31. NeuroRx Research
  32. Neurotrack Technologies
  33. Novartis Pharmaceuticals Corporation
  34. Pfizer Inc.
  35. Piramal Imaging
  36. Servier
  37. Takeda Pharmaceutical Company
  38. Transition Therapeutics
  39. Canadian Institutes of Health Research
  40. Italian Medicines Agency (Interceptor)

向作者/读者索取更多资源

A well-selected healthy control dataset is essential for accurate voxel-wise analyses of brain metabolism. Different datasets show varying performance in assessing hypometabolism patterns in different patient cohorts, but overall accuracy is high.
Purpose An appropriate healthy control dataset is mandatory to achieve good performance in voxel-wise analyses. We aimed at evaluating [18F]FDG PET brain datasets of healthy controls (HC), based on publicly available data, for the extraction of voxel-based brain metabolism maps at the single-subject level. Methods Selection of HC images was based on visual rating, after Cook's distance and jack-knife analyses, to exclude artefacts and/or outliers. The performance of these HC datasets (ADNI-HC and AIMN-HC) to extract hypometabolism patterns in single patients was tested in comparison with the standard reference HC dataset (HSR-HC) by means of Dice score analysis. We evaluated the performance and comparability of the different HC datasets in the assessment of single-subject SPM-based hypometabolism in three independent cohorts of patients, namely, ADD, bvFTD and DLB. Results Two-step Cook's distance analysis and the subsequent jack-knife analysis resulted in the selection of n = 125 subjects from the AIMN-HC dataset and n = 75 subjects from the ADNI-HC dataset. The average concordance between SPM hypometabolism t-maps in the three patient cohorts, as obtained with the new datasets and compared to the HSR-HC standard reference dataset, was 0.87 for the AIMN-HC dataset and 0.83 for the ADNI-HC dataset. Pattern expression analysis revealed high overall accuracy (> 80%) of the SPM t-map classification according to different statistical thresholds and sample sizes. Conclusions The applied procedures ensure validity of these HC datasets for the single-subject estimation of brain metabolism using voxel-wise comparisons. These well-selected HC datasets are ready-to-use in research and clinical settings.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据