4.7 Article

Optimization of pyrazolo[1,5-a]pyrimidines lead to the identification of a highly selective casein kinase 2 inhibitor

期刊

出版社

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.ejmech.2020.112770

关键词

Casein kinase 2 inhibitor; Macrocyclic kinase inhibitor; Pyrazolo[1,5-a]pyrimidines; NanoBRET; Antiproliferative activity; X-ray

资金

  1. AbbVie [1097737]
  2. Bayer Pharma AG
  3. Boehringer Ingelheim
  4. Canada Foundation for Innovation
  5. Eshelman Institute for Innovation
  6. Genome Canada
  7. Innovative Medicines Initiative EUbOPEN [875510]
  8. Janssen
  9. Merck KGaADarmstadt Germany
  10. MSD
  11. Novartis Pharma AG
  12. Ontario Ministry of Economic Development and Innovation
  13. Pfizer
  14. Sao Paulo Research Foundation-FAPESP
  15. Takeda
  16. Wellcome
  17. German cancer network (DKTK)
  18. Frankfurt cancer center (FCI)

向作者/读者索取更多资源

Casein kinase 2 (CK2) is a constitutively expressed serine/threonine kinase that has a large diversity of cellular substrates. Thus, CK2 has been associated with a plethora of regulatory functions and dysregulation of CK2 has been linked to disease development in particular to cancer. The broad implications in disease pathology makes CK2 an attractive target. To date, the most advanced CK2 inhibitor is silmitasertib, which has been investigated in clinical trials for treatment of various cancers, albeit several off-targets for silmitasertib have been described. To ascertain the role of CK2 inhibition in cancer, other disease and normal physiology the development of a selective CK2 inhibitor would be highly desirable. In this study we explored the pyrazolo [1,5-a]pyrimidine hinge-binding moiety for the development of selective CK2 inhibitors. Optimization of this scaffold, which included macrocyclization, led to IC20 (31) a compound that displayed high in vitro potency for CK2 (K-D = 12 nM) and exclusive selectivity for CK2. Xray analysis revealed a canonical type-I binding mode for IC20 (31). However, the polar carboxylic acid moiety that is shared by many CK2 inhibitors including silmitasertib was required for potency but limits the cellular activity of IC20 (31) and the cellular IC50 dropped to the low micromolar range. In summary, IC20 (31) represents a highly selective and potent inhibitor of CK2, which can be used as a tool compound to study CK2 biology and potential new applications for the treatment of diseases. (c) 2020 Elsevier Masson SAS. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据