4.5 Article

Dynamic changes in DNA methylation occur in TE regions and affect cell proliferation during leaf-to-callus transition in Arabidopsis

期刊

EPIGENETICS
卷 17, 期 1, 页码 41-58

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/15592294.2021.1872927

关键词

Arabidopsis; callus; CCA1; DNA methylation; TE

资金

  1. Basic Science Research program by the National Research Foundation of Korea [NRF-2019R1A2C2006915]
  2. Basic Research Laboratory program by the National Research Foundation of Korea [NRF-2020R1A4A2002901]
  3. Creative-Pioneering Researchers Program through Seoul National University [0409-20200281]

向作者/读者索取更多资源

During the formation of callus in plant somatic cells, DNA methylation plays a key role in coordinating cell cycle regulation. Researchers found that genes involved in cell cycle regulation were enriched during the transition from leaves to callus, forming a coexpression gene network with pluripotency regulators. Additionally, CIRCADIAN CLOCK-ASSOCIATED 1 (CCA1) was newly identified as a regulator of plant regeneration.
Plant somatic cells can be reprogrammed into pluripotent cell mass, called callus, through a two-step in vitro tissue culture method. Incubation on callus-inducing medium triggers active cell proliferation to form a pluripotent callus. Notably, DNA methylation is implicated during callus formation, but a detailed molecular process regulated by DNA methylation remains to be fully elucidated. Here, we compared genome-wide DNA methylation profiles between leaf and callus tissues in Arabidopsis using whole-genome bisulphite-sequencing. Global distribution of DNA methylation showed that CHG methylation was increased, whereas CHH methylation was reduced especially around transposable element (TE) regions during the leaf-to-callus transition. We further analysed differentially expressed genes around differentially methylated TEs (DMTEs) during the leaf-to-callus transition and found that genes involved in cell cycle regulation were enriched and also constituted a coexpression gene network along with pluripotency regulators. In addition, a conserved DNA sequence analysis for upstream cis-elements led us to find a putative transcription factor associated with cell fate transition. CIRCADIAN CLOCK-ASSOCIATED 1 (CCA1) was newly identified as a regulator of plant regeneration, and consistently, the cca1lhy mutant displayed altered phenotypes in callus proliferation. Overall, these results suggest that DNA methylation coordinates cell cycle regulation during callus formation, and CCA1 may act as a key upstream coordinator at least in part in the processes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据