4.5 Article

Effect-Based Trigger Values for Mixtures of Chemicals in Surface Water Detected with In Vitro Bioassays

期刊

ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY
卷 40, 期 2, 页码 487-499

出版社

WILEY
DOI: 10.1002/etc.4944

关键词

Cytotoxicity; Specific mode of action; Environmental quality standard; Water quality; Reporter gene assay; Water pollution

资金

  1. Global Water Research Coalition - Public Utilities Board
  2. Global Water Research Coalition - Stowa-Foundation for Applied Water Research
  3. Global Water Research Coalition - Water Research Australia
  4. Global Water Research Coalition - Water Research Commission
  5. Global Water Research Coalition - Water Services Association of Australia
  6. Global Water Research Coalition - KWR-Water
  7. Global Water Research Coalition - SUEZ
  8. Global Water Research Coalition - Veolia-Research and Innovation
  9. Global Water Research Coalition - Griffith University
  10. Global Water Research Coalition - Helmholtz Centre for Environmental Research
  11. ProjektDEAL

向作者/读者索取更多资源

This study introduces a new method to define effect-based trigger values for different bioassays, which are determined by considering the distribution of specificity ratios of all active chemicals. The new method not only takes mixture effects into account but also includes all chemicals, leading to more accurate differentiation of water quality variances.
Effect-based trigger (EBT) values for in vitro bioassays are important for surface water quality monitoring because they define the threshold between acceptable and poor water quality. They have been derived for highly specific bioassays, such as hormone-receptor activation in reporter gene bioassays, by reading across from existing chemical guideline values. This read-across method is not easily applicable to bioassays indicative of adaptive stress responses, which are triggered by many different chemicals, and activation of nuclear receptors for xenobiotic metabolism, to which many chemicals bind with rather low specificity. We propose an alternative approach to define the EBT from the distribution of specificity ratios of all active chemicals. The specificity ratio is the ratio between the predicted baseline toxicity of a chemical in a given bioassay and its measured specific endpoint. Unlike many previous read-across methods to derive EBTs, the proposed method accounts for mixture effects and includes all chemicals, not only high-potency chemicals. The EBTs were derived from a cytotoxicity EBT that was defined as equivalent to 1% of cytotoxicity in a native surface water sample. The cytotoxicity EBT was scaled by the median of the log-normal distribution of specificity ratios to derive the EBT for effects specific for each bioassay. We illustrate the new approach using the example of the AREc32 assay, indicative of the oxidative stress response, and 2 nuclear receptor assays targeting the peroxisome proliferator-activated receptor gamma and the arylhydrocarbon receptor. The EBTs were less conservative than previously proposed but were able to differentiate untreated and insufficiently treated wastewater from wastewater treatment plant effluent with secondary or tertiary treatment and surface water. Environ Toxicol Chem 2021;00:1-13. (c) 2020 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据