4.7 Article

A comparative study of ceramic nanoparticles synthesized for antibiotic removal: catalysis characterization and photocatalytic performance modeling

期刊

ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
卷 28, 期 11, 页码 13900-13912

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s11356-020-11616-z

关键词

Ceramics nanoparticles; Co-precipitation; Sol-gel processes; Photocatalysis; Adsorption; Kinetic modeling

资金

  1. Thematic Research Agency for Science and Technology (ATRST) through the national research program [PM 04/2018, B00L01UN180120190003]
  2. Directorate-General for Scientific Research and Technological Development (DGRSDT) of Algeria

向作者/读者索取更多资源

CuCr2O4 nanoparticle ceramics prepared through sol-gel and co-precipitation methods exhibit distinct physical and chemical properties, leading to different performances in the removal of cefaclor contaminants. The sol-gel samples show higher photocatalytic activity, while the co-precipitation samples exhibit higher adsorption capacity.
The heterogeneous photocatalysis process has been known to provide significant levels of degradation and mineralization of emerging contaminants including antibiotics. For that, nanoparticle CuCr2O4 (CCO) ceramics were successfully prepared via sol-gel (SG) and co-precipitation (CP) methods to obtain spinel with desired structural features and properties and also to improve the photocatalytic performances. The CCO crystallite phase was produced at 750 degrees C all ceramics, disregarding the synthesis route. CCO physical and chemical properties were checked by X-ray diffraction (XRD) with Rietveld refinement, Brunauer-Emmett-Teller (BET), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), transmission electron microscope (TEM), and diffuse reflectance solid (DRS). The XRD patterns demonstrated that the synthesized catalysts displayed a small crystallite size between 17.45 and 26.24 nm for SG and 20.97 and 36.86 nm for the CCOCP samples. The observation by SEM and TEM of the nanopowders showed a typical morphology with comparable particle sizes for both synthesized routes (20-30 nm). SG agglomeration rates were higher, and particles stick together more efficiently considering the CP method, while the CCOCP method led to a more significant porosity. Their photocatalytic and adsorption performances were examined for cefaclor (CFC) removal chosen as a target pharmaceutical contaminant in water. The results obtained by the methods differed since nanoparticles prepared by SG led to high photocatalytic activity. In contrast, a high CFC adsorption was observed for those prepared via the CP method, and that agreed with the findings of the characterization analysis. The kinetics of the adsorption process was found to follow the pseudo-second-order rate law. In contrast, the data of the photodegradation process were further found to comply with the Lagergren kinetic law. Nevertheless, the global reaction rate is probably controlled by the intra-particular diffusion of CFC, regardless of the elimination process.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据