4.8 Article

Unraveling the Overlooked Involvement of High-Valent Cobalt-Oxo Species Generated from the Cobalt(II)-Activated Peroxymonosulfate Process

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 54, 期 24, 页码 16231-16239

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.est.0c06808

关键词

-

资金

  1. National Natural Science Foundation of China [21776223]
  2. National Key R&D Program of China [2018YFC1903202]

向作者/读者索取更多资源

Sulfate radical (SO4 center dot-) is widely recognized as the predominant species generated from the cobalt(II)-activated peroxymonosulfate (PMS) process. However, in this study, it was surprisingly found that methyl phenyl sulfoxide (PMSO) was readily oxidized to the corresponding sulfone (PMSO2) with a transformation ratio of similar to 100% under acidic conditions, which strongly implied the generation of high-valent cobalt-oxo species [Co(IV)] instead of SO4 center dot- in the Co(II)/PMS process. Scavenging experiments using methanol (MeOH), tert-butyl alcohol, and dimethyl sulfoxide further suggested the negligible role of SO4 center dot- and hydroxyl radical ((OH)-O-center dot) but favored the generation of Co(IV). By employing O-18 isotope-labeling technique, the formation of Co(IV) was conclusively verified and the oxygen atom exchange reaction between Co(IV) and H2O was revealed. Density functional theory calculation determined that the formation of Co(IV) was thermodynamically favorable than that of SO4 center dot- and (OH)-O-center dot in the Co(II)/PMS process. The generated Co(IV) species was indicated to be highly reactive due to the existence of oxo-wall and capable of oxidizing the organic pollutant that is rather recalcitrant to SO4 center dot- attack, for example, nitrobenzene. Additionally, the degradation intermediates of sulfamethoxazole (SMX) in the Co(II)/PMS process under acidic conditions were identified to further understand the interaction between Co(IV) and the representative contaminant. The developed kinetic model successfully simulated PMSO loss, PMSO2 production, SMX degradation, and/or PMS decomposition under varying conditions, which further supported the proposed mechanism. This study might shed new light on the Co(II)/PMS process.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据