4.4 Article

CDX4 and retinoic acid interact to position the hindbrain-spinal cord transition

期刊

DEVELOPMENTAL BIOLOGY
卷 410, 期 2, 页码 178-189

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ydbio.2015.12.025

关键词

Cdx; Retinoic acid; Hox genes; Hindbrain; Spinal cord

资金

  1. NIH Molecular and Cellular Biology Training Grant [T32 GM007183]
  2. Helen Hay Whitney Foundation
  3. NSF [IOS-090449]
  4. NIH [GM067714]

向作者/读者索取更多资源

The sub-division of the posterior-most territory of the neural plate results in the formation of two distinct neural structures, the hindbrain and the spinal cord. Although many of the molecular signals regulating the development of these individual structures have been elucidated, the mechanisms involved in delineating the boundary between the hindbrain and spinal cord remain elusive. Two molecules, retinoic acid (RA) and the Cdx4 transcription factor have been previously implicated as important regulators of hindbrain and spinal cord development, respectively. Here, we provide evidence that suggests multiple regulatory interactions occur between RA signaling and the Cdx4 transcription factor to establish the anterior-posterior (AP) position of the transition between the hindbrain and spinal cord. Using chemical inhibitors to alter RA concentrations and morpholinos to knock-down Cdx4 function in zebrafish, we show that Cdx4 acts to prevent RA degradation in the presumptive spinal cord domain by suppressing expression of the RA degradation enzyme, Cyp26a1. In the hindbrain, RA signaling modulates its own concentration by activating the expression of cyp26a1 and inhibiting the expansion of cdx4. Therefore, interactions between Cyp26a1 and Cdx4 modulate RA levels along the AP axis to segregate the posterior neural plate into the hindbrain and spinal cord territories. (C) 2016 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据