4.7 Article

Hysteresis of the Earth system under positive and negative CO2 emissions

期刊

ENVIRONMENTAL RESEARCH LETTERS
卷 15, 期 12, 页码 -

出版社

IOP Publishing Ltd
DOI: 10.1088/1748-9326/abc4af

关键词

carbon dioxide removal; positive and negative emissions; hysteresis of the Earth system; carbon cycle; climate modeling

资金

  1. Oeschger Centre for Climate Change Research
  2. Swiss National Science Founation (SNF) [200020_172745]
  3. EU Commission (H2020 project TiPES) [820970]
  4. Swiss National Science Foundation (SNF) [200020_172476]
  5. European Union [820989]
  6. Swiss National Science Foundation (SNF) [200020_172745] Funding Source: Swiss National Science Foundation (SNF)

向作者/读者索取更多资源

Carbon dioxide removal (CDR) from the atmosphere is part of all emission scenarios of the IPCC that limit global warming to below 1.5 degrees C. Here, we investigate hysteresis characteristics in 4x pre-industrial atmospheric CO2 concentration scenarios with exponentially increasing and decreasing CO2 using the Bern3D-LPX Earth system model of intermediate complexity. The equilibrium climate sensitivity (ECS) and the rate of CDR are systematically varied. Hysteresis is quantified as the difference in a variable between the up and down pathway at identical cumulative carbon emissions. Typically, hysteresis increases non-linearly with increasing ECS, while its dependency on the CDR rate varies across variables. Large hysteresis is found for global surface air temperature (Delta SAT), upper ocean heat content, ocean deoxygenation, and acidification. We find distinct spatial patterns of hysteresis: Delta SAT exhibits strong polar amplification, hysteresis in O-2 is both positive and negative depending on the interplay between changes in remineralization of organic matter and ventilation. Due to hysteresis, sustained negative emissions are required to return to and keep a CO2 and warming target, particularly for high climate sensitivities and the large overshoot scenario considered here. Our results suggest, that not emitting carbon in the first place is preferable over carbon dioxide removal, even if technologies would exist to efficiently remove CO2 from the atmosphere and store it away safely.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据