4.7 Article

Successful remediation of soils with mixed contamination of chromium and lindane: Integration of biological and physico-chemical strategies

期刊

ENVIRONMENTAL RESEARCH
卷 194, 期 -, 页码 -

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.envres.2020.110666

关键词

Biostimulation; Bioaugmentation; Phytoremediation; Vermiremediation; nZVI; Ecotoxicity

资金

  1. MINECO [AGL 2015-64481-C2-1-R, AGL 2016-76592-R]
  2. European Union [PhytoSUDOE-SOE1/P5/E0189]
  3. Basque Government [GV IT1018-16]

向作者/读者索取更多资源

The combination of an organic amendment, biological treatment, and nZVI was shown to be the strategy of choice in soils with high concentrations of Cr(VI) and lindane, while for moderate levels of chromium, the organic amendment plus biological treatment is the most profitable treatment.
Soils contaminated by organic and inorganic pollutants like Cr(VI) and lindane, is currently a main environmental challenge. Biological strategies, such as biostimulation, bioaugmentation, phytoremediation and vermiremediation, and nanoremediation with nanoscale zero-valent iron (nZVI) are promising approaches for polluted soil health recovery. The combination of different remediation strategies might be key to address this problem. For this reason, a greenhouse experiment was performed using soil without or with an organic amendment. Both soils were contaminated with lindane (15 mg kg(-1)) and Cr(VI) (100 or 300 mg kg(-1)). After one month of aging, the following treatments were applied: (i) combination of bioaugmentation (actinobacteria), phytoremediation (Brassica napus), and vermiremediation (Eisenia fetida), or (ii) nanoremediation with nZVI, or (iii) combination of biological treatments and nanoremediation. After 60 days, the wellness of plants and earthworms was assessed, also, soil health was evaluated through physico-chemical parameters and biological indicators. Cr(VI) was more toxic and decreased soil health, however, it was reduced to Cr(III) by the amendment and nZVI and, to a lesser extent, by the biological treatment. Lindane was more effectively degraded through bioremediation. In non-polluted soils, nZVI had strong deleterious effects on soil biota when combined with the organic matter, but this effect was reverted in soils with a high concentration of Cr(VI). Therefore, under our experimental conditions bioremediation might be the best for soils with a moderate concentration of Cr(VI) and organic matter. The application of nZVI in soils with a high content of organic matter should be avoided except for soils with very high concentrations of Cr(VI). According to our study, among the treatments tested, the combination of an organic amendment, biological treatment, and nZVI was shown to be the strategy of choice in soils with high concentrations of Cr(VI) and lindane, while for moderate levels of chromium, the organic amendment plus biological treatment is the most profitable treatment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据