4.7 Article

A case study in participatory science with mutual capacity building between university and tribal researchers to investigate drinking water quality in rural Maine

期刊

ENVIRONMENTAL RESEARCH
卷 192, 期 -, 页码 -

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.envres.2020.110460

关键词

Citizen science; Water quality; Community engagement

资金

  1. National Institute of Environmental Health Sciences, National Institutes of Health [P30ES002109]
  2. National Institute of Environmental Health Sciences Superfund Basic Research Program [P42 ES027707]

向作者/读者索取更多资源

The project involved MIT researchers and the Sipayik Environmental Department working together on a participatory science project to analyze water quality in Maine communities. By engaging local communities and conducting capacity-building trainings, they were able to inform households about lead and arsenic levels in drinking water, and build long-term relationships that improved environmental literacy and scientific capacity in the region.
Background: Participatory science or citizen science is increasingly being recognized for providing benefits to scientists and community members alike. However, most participatory science projects include community researchers only in the sample collection phase of the research project. Here we describe how a rural tribal community and urban university utilized participatory science methods to engage community researchers across an entire research study, creating numerous opportunities for mutual capacity building. Objectives: Researchers from MIT and the Sipayik Environmental Department, a tribal government department, partnered to co-launch a participatory science project to analyze municipal and private well drinking water quality in households in three Maine communities. The objective was to provide households with information about metals, primarily lead and arsenic, in their drinking water, and to improve public education, community partnerships, and local scientific capacity. Methods: MIT and Sipayik researchers engaged local communities through public community meetings, mailed flyers sent to residents, and meetings with local stakeholders. MIT and community researchers worked together to design and implement the study to quantify metals in community drinking water samples, as well as hold capacity-building trainings. Individual drinking water results were communicated to households, and generalized results were discussed at community meetings in the report-back phase. Results: The study attained a 29% household participation rate in the region. The researchers completed the analysis and report-back on 652 water samples. Isolated incidences of lead and geologically-attributable arsenic exceeding EPA standards were found. Individual report-backs of the results enabled local participatory scientists to make their own informed public health decisions. The study produced methodologies for navigating potential ethical issues, working with diverse communities, and collaborating over challenging geographical distances. Discussion: This project developed methodologies to build long-term relationships with local scientists and to engage community members and enhance the environmental literacy of rural communities. Both MIT and Sipayik researchers learned from each other throughout the project; Sipayik researchers built technical capacity while MIT researchers gained local and cultural understanding. Community outreach methods were most effective when sent directly to residents as mailed flyers or through Sipayik researchers' outreach.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据