4.7 Article

Wood vinegar and biochar co-application mitigates nitrous oxide and methane emissions from rice paddy soil: A two-year experiment

期刊

ENVIRONMENTAL POLLUTION
卷 267, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.envpol.2020.115403

关键词

Atmospheric environment; Biochar; GHGI; Greenhouse gases; Waste recycle and reuse; Pyroligneous acid

资金

  1. National Key Research and Development Program of China [2018YFD0800204]
  2. National Natural Science Foundation of China [41877090, 31972518]
  3. Jiangsu Province Agricultural Science and Technology Independent Innovation Fund Project [CX(19)1007]
  4. JAAS

向作者/读者索取更多资源

Both biochar (BC) and wood vinegar (WV) influence the nitrous oxide (N2O) and methane (CH4) emissions from agricultural systems. However, the impacts of BC and WV co-application on rice production, N2O and CH4 emissions are not well documented. We here conducted a two-year soil columns experiment with four treatments: WV (5 t WV ha(-1)), BC (7.5 t BC ha(-1)), WV + BC (5 t WV ha(-1) +7.5 t BC ha(-1)) and a control (no treatment). The results showed that BC and WV + BC produced higher rice grain yield than the control by 14.1-15.9% in 2016 and by 4.1-5.2% in 2017, respectively. While WV increased rice grain yield by 11.2% in 2016, it had no significant influence on yield in 2017. Both WV and BC significantly mitigated N2O emissions by 22.4-41.8% in 2016 and 22.4-36.9% in 2017, respectively. Interestingly, WV + BC treatment showed the highest N2O mitigation efficiency, with a 52.9-62.8% mitigations in 2016 and 2017. Furthermore, the co-application of WV and BC significantly mitigated CH4 emissions by 42.6% in 2016 and 35.3% in 2017, respectively, while applying WV or BC alone had no annually-consistent mitigation effect on CH4 emissions. Overall, GWPt of rice growth cycle was most significantly suppressed by WV + BC with a 48.7-56.1% reduction, followed by WV and BC with 20.4-28.0% and 19.7-35.7% reductions, respectively. Consequently, the WV + BC treatment had the highest GHGI mitigation effect, averaging with 56.7% over two consecutive rice growth cycles. In conclusion, co-application of WV and BC is recommended for rice cultivation, which can both improve rice yield and minimize GHG emissions. (c) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据