4.7 Article

Transformation of bacterial community structure in rumen liquid anaerobic digestion of rice straw

期刊

ENVIRONMENTAL POLLUTION
卷 269, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.envpol.2020.116130

关键词

Rumen liquid; Anaerobic digestion; Bacterial community structure; Carbohydrate transport and metabolism

资金

  1. National Natural Science Foundation of China [51578068]

向作者/读者索取更多资源

This study explored the transformation of the bacterial community structure in rumen liquid anaerobic digestion of rice straw, showing the critical role of rumen microorganisms in the degradation of lignocellulosic biomass. The findings contribute to a better application of rumen microorganisms in lignocellulose degradation.
Rumen liquid can effectively degrade lignocellulosic biomass, in which rumen microorganisms play an important role. In this study, transformation of bacterial community structure in rumen liquid anaerobic digestion of rice straw was explored. Results showed that rice straw was efficiently hydrolyzed and acidified, and the degradation efficiency of cellulose, hemicellulose and lignin reached 46.2%, 60.4%, and 12.9%, respectively. The concentration of soluble chemical oxygen demand (SCOD) and total volatile fatty acid (VFA) reached 12.9 and 8.04 g L-1. The high-throughput sequencing results showed that structure of rumen bacterial community significantly changed in anaerobic digestion. The Shannon diversity index showed that rumen bacterial diversity decreased by 32.8% on the 5th day of anaerobic digestion. The relative abundance of Prevotella and Fibrobacter significantly increased, while Ruminococcus significantly decreased at the genus level. The Spearman correlation heatmap showed that pH and VFA were the critical factors affecting the rumen bacterial community structure. The function prediction found that rumen bacteria mainly functioned in carbohydrate transport and metabolism, which might contain a large number of lignocellulose degrading enzyme genes. These studies are conducive to the better application of rumen microorganisms in the degradation of lignocellulosic biomass. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据