4.7 Article

Effect of fish pond drainage on turbidity, suspended solids, fine sediment deposition and nutrient concentration in receiving pearl mussel streams

期刊

ENVIRONMENTAL POLLUTION
卷 274, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.envpol.2021.116520

关键词

Aquaculture management; Environmental impacts; Extensive cyprinid production; Mitigation methods; Retention structures

资金

  1. Bavarian State Ministry of the Environment and Consumer Protection, Germany [78e4640000003]

向作者/读者索取更多资源

Extensive fish production in earthen ponds can lead to fine sediment and nutrient pollution in receiving streams, impacting aquatic organisms like freshwater pearl mussels. By controlling drainage volume, implementing physical mitigation structures, and changing harvesting methods, the negative effects of pond drainage on water environments can be minimized.
Extensive fish production in earthen ponds is a common aquaculture practice, which requires draining of the ponds for fish harvesting. Despite their value for biodiversity and water retention, the impact of fish ponds on the receiving streams as regards fine sediment and nutrient pollution remains controversial. This holds particularly true for streams with endangered freshwater pearl mussels, requiring a highly permeable streambed with low fine sediment content for successful juvenile development. This study quantified the amount of fine sediment, suspended solids and nutrients delivered to pearl mussel streams in relation to the pond characteristics, distance to the receiving stream and applications of measures to prevent the input of fines. Comparing fine sediment deposition above and downstream of the pond inlets after 21 pond drainage operations, as well as continuous measurements of the turbidity for 12 operations revealed varying effects of pond fishing on the receiving streams. Average fine sediment deposition was increased by nearly six-fold compared to upstream and maximum turbidity values for single drainage operations exceeded 460 NTU. Draining between 1% and 92% of the water volume of individual ponds resulted in additional loading of 0.07-4.6 t suspended particles. Physical mitigation structures that prevent mobilized material from reaching the receiving stream significantly reduced the fine sediment input and deposition rates. Harvesting methods that do not require complete drainage of the pond reduced the turbidity by ten-fold. Without mitigation measures, the impact of pond drainage operations on the fine sediment deposition was comparable to high discharge events. No significant increase in nutrient concentration was observed during most drainage operations. These results reveal remarkable effects of pond drainage on the aquatic environment, as well as the possibility to minimize such impacts by switching to harvest methods that do not require complete pond drainage and installation of sedimentation structures. (C) 2021 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据