4.7 Article

Low density polyethylene degradation by filamentous fungi

期刊

ENVIRONMENTAL POLLUTION
卷 274, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.envpol.2021.116548

关键词

Filamentous fungi; Polyethylene; SEM; FTIR; Plastic degradation

资金

  1. Fondazione CRT [2019.0471]
  2. Fondazione Cariplo [2014-0465]

向作者/读者索取更多资源

The fungal community in plastic-contaminated landfill soil was studied, showing that certain strains can utilize polyethylene as a sole carbon source for growth and degradation, with potential applications in plastic waste management.
Polyethylene (PE) is the most abundant non-degradable plastic waste, posing a constant and serious threat to the whole ecosystem. In the present study, the fungal community of plastic wastes contaminating a landfill soil has been studied. After 6 months of enrichment, 95 fungi were isolated, mostly belonging to the Ascomycota phylum. They were screened under in vitro condition: most of fungi (97%) were capable of growing in the presence of PE powder (5-10 g L-1) as sole carbon source. Fusarium strains better tolerated high concentration of PE. Up to 13 strains were chosen for further degradation trails, where the process was monitored by respirometry tests and by observing changes in PE chemical and physical structure by FTIR analysis and SEM images. Major results were observed for Fusarium oxysporum, Fusarium falciforme and Purpureocillum lilacinum, as they caused strong oxidation phenomena and changes in the PE film morphology. Results suggested that the initial oxidation mechanisms targeted first the methyl terminal groups. Changes in the infrared spectra were strongly strain-dependent, denoting the activation of different degradation pathways. Through the SEM analysis, the actual damages provoked by fungi were observed, including swellings, pits and furrows, bumps and partial exfoliations. Considering the rising concern about plastic disposal worldwide, the ability of these fungi to colonize PE and utilize it as carbon source is of great interest, as no pretreatments and pro-oxidant stimulants were needed. (C) 2021 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据