4.8 Article

Biomass burning spatiotemporal variations over South and Southeast Asia

期刊

ENVIRONMENT INTERNATIONAL
卷 145, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.envint.2020.106153

关键词

Crop residue burning; Forest fire; Siegel's repeated median; Standard deviation ellipse; Time series

向作者/读者索取更多资源

In this study, Moderate Resolution Imaging Spectroradiometer active fire and land use products were integrated to extract and classify biomass burning (BB) data for South Asia (SA) and Southeast Asia (SEA). Several trend and geographic distribution analyses were conducted at the grid (0.25 degrees x 0.25 degrees) and regional scales. As the principal local form of BB, crop residue burning (CRB) in SA increased by 844 spots/yr, and the Mann-Kendall (MK) tau reached 0.61. Additionally, the CRB in Punjab-Haryana, a region a well-known for severest CRB, presented a significant declining trend. BB in mainland SEA was much more intense and was dominated by forest and shrubland fires. Forest fires in mainland SEA declined at a rate of -209 spots/yr, and shrubland fire conversely grew at a rate of 803 spots/yr, which was likely related to the dramatic land cover change induced by the local swidden agriculture. Unlike other regions, BB in equatorial SEA primarily occurred in the second half of the year (August to October), and it was extremely vulnerable to El Nino events. When the annual sea surface temperature anomalies within the Nino 3 region improved by 1 degrees C, the annual BB spots and fire radiative power in equatorial SEA increased by 5.18 x 10(4) and 2.40 x 10(6) MW, respectively. Although the interannual variations in equatorial SEA were dramatic, the robust Siegel's repeated median estimator still revealed that equatorial SEA BB significantly declined by -1825 spots/yr. This regional decline reflects government endeavors to curb indigenous BB. However, regions with enhanced BB still need to draw more attention, and it is imperative for the Indonesian government to take substantial measures to reduce anthropogenic fire sources during El Nino events.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据