4.8 Article

Hexafluoropropylene oxide-dimer acid (HFPO-DA or GenX) alters maternal and fetal glucose and lipid metabolism and produces neonatal mortality, low birthweight, and hepatomegaly in the Sprague-Dawley rat

期刊

ENVIRONMENT INTERNATIONAL
卷 146, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.envint.2020.106204

关键词

PFAS; Developmental toxicity; In utero exposure; Peroxisome proliferator-activated receptor; Low birthweight; Glucose metabolism

资金

  1. U.S. Environmental Protection Agency Office of Research and Development Chemical Safety for Sustainability Research Action Plan

向作者/读者索取更多资源

HFPO-DA is a developmental toxicant in rats, causing biological changes in maternal and fetal livers, decreased pup birth weight and increased neonatal mortality, as well as metabolic abnormalities at birth. The potency of HFPO-DA in rats is comparable to PFOS based on serum concentration, and the spectrum of adverse effects is consistent with other PFAS such as PFOS and PFOA.
Hexafluoropropylene oxide dimer acid (HFPO-DA or GenX) is an industrial replacement for the straight-chain perfluoroalkyl substance (PFAS), perfluorooctanoic acid (PFOA). Previously we reported maternal, fetal, and postnatal effects from gestation day (GD) 14-18 oral dosing in Sprague-Dawley rats. Here, we further evaluated the perinatal toxicity of HFPO-DA by orally dosing rat dams with 1-125 mg/kg/d (n = 4 litters per dose) from GD16-20 and with 10-250 mg/kg/d (n = 5) from GD8 - postnatal day (PND) 2. Effects of GD16-20 dosing were similar to those previously reported for GD14-18 dosing and included increased maternal liver weight, altered maternal serum lipid and thyroid hormone concentrations, and altered expression of peroxisome proliferator-activated receptor (PPAR) pathway genes in maternal and fetal livers. Dosing from GD8-PND2 produced similar effects as well as dose-responsive decreased pup birth weight (>= 30 mg/kg), increased neonatal mortality (>= 62.5 mg/kg), and increased pup liver weight (>= 10 mg/kg). Histopathological evaluation of newborn pup livers indicated a marked reduction in glycogen stores and pups were hypoglycemic at birth. Quantitative gene expression analyses of F1 livers revealed significant alterations in genes related to glucose metabolism at birth and on GD20. Maternal serum and liver HFPO-DA concentrations were similar between dosing intervals, indicating rapid clearance, however dams dosed GD8 - PND2 had greater liver weight and gestational weight gain effects at lower doses than GD16-20 dosing, indicating the importance of exposure duration. Comparison of neonatal mortality dose-response curves between HFPO-DA and previously published perfluorooctane sulfonate (PFOS) data indicated that, based on serum concentration, the potency of these two PFAS are similar in the rat. Overall, HFPO-DA is a developmental toxicant in the rat and the spectrum of adverse effects is consistent with prior PFAS toxicity evaluations, such as PFOS and PFOA.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据