4.7 Article

Proposal and thermoeconomic analysis of a novel combined cooling and power system using carbon dioxide as the working fluid

期刊

ENERGY CONVERSION AND MANAGEMENT
卷 227, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.enconman.2020.113566

关键词

Combined cooling and power system; Ejector refrigeration cycle; Nuclear power; Multi-objective optimization

资金

  1. National Natural Science Foundation of China [51776020]
  2. Chongqing Postdoctoral Science Foundation [cstc202jcyj-bshXOO73]

向作者/读者索取更多资源

A novel combined cooling and power system integrating sCO2 recompression Brayton cycle with E-TCRC is proposed to utilize nuclear power effectively. The system performance is evaluated and optimized through mathematical and economic models, with exergy efficiency and total product unit cost as main criteria.
A novel combined cooling and power (CCP) system integrating a supercritical carbon dioxide recompression Brayton cycle with an ejector transcritical carbon dioxide refrigeration cycle (E-TCRC) is proposed to realize the effective utilization of nuclear power. In the proposed system, a portion of CO2 exiting the pre-cooler is used to drive the E-TCRC for generating cooling and recovering partial waste heat of sCO(2) turbine exhaust. The mathematical model and economic model of the proposed system are established under steady-state conditions. Besides, the exergy efficiency and total product unit cost of the system are selected as the main criteria to evaluate system performance. Parametric analysis is applied to study the effects of four key parameters on the system performance. The CCP system, conventional separated cooling and power (C-SCP) system and ejector separated cooling and power (E-SCP) system are optimized by single-objective and multi-objective optimization. Single-objective optimization reveals that the exergy efficiencies of the CCP system are up to 1.08%pt (percentage point), 0.80%pt and 0.47%pt higher than those of the C-SCP system at the corresponding evaporation temperatures (-20 degrees C,-10 degrees C and 0 degrees C). Besides, the CCP system performs better than the E-SCP system at lower turbine inlet pressures. The multi-objective optimization shows that when the evaporation temperature increases from -20 degrees C to 0 degrees C, the total product unit cost of the CCP system decreases from 10.087 $/GJ to 9.668 $/GJ, and exergy efficiency increases from 59.25% to 60.97%.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据