4.7 Article

Evaluation of electricity generation subsystem of power-to-gas-to-power unit using gas expander and heat recovery steam generator

期刊

ENERGY
卷 212, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2020.118600

关键词

Energy storage; Power-to-Gas; Heat recovery steam generator; SNG; Techno-economic analysis

资金

  1. National Science Centre [2017/27/B/ST8/02270]

向作者/读者索取更多资源

Power-to-hydrogen technology allows the effective use of electricity produced during the energy demand valleys, mainly in stochastic renewable energy sources. The dynamics of implementing such systems in the economy is correlated with the development of technologies enabling safe use of hydrogen. Currently, planning investments in power-to-hydrogen requires considering the risks associated with the possibility of reduced hydrogen demand. A way of protection against permanent or periodic reduction in the demand for hydrogen may be investments in electricity generation systems, which, thanks to the use of by-product of the electrolysis process - oxygen, can allow using of not only hydrogen but also natural gas. This paper discusses the thermodynamic and economic study of a hydrogen-to-power system using methanation and oxy-combustion combined cycle. The thermodynamic calculations focus on analysis of heat recovery steam generator (HRSG) structures and determining the energy efficiency of the system. The obtained energy storage efficiency are in the range of 16.29-24.95%. Within economic considerations, an electricity generation unit consisting of methanation and single-pressure HRSG systems cooperating with 100 MW hydrogen generators unit is considered. Sensitivity analyzes are performed and the value of investment outlays in hydrogen production unit and the price of electricity are decision variables. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据