4.7 Article

Effects of micro-combustor geometry and size on the heat transfer and combustion characteristics of premixed hydrogen/air flames

期刊

ENERGY
卷 215, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2020.119061

关键词

Micro-combustor; Bluff body; Hydrogen/air combustion; Flame temperature

向作者/读者索取更多资源

The major challenge in the development of micro-combustors is flame instabilities, which lead to non-uniform wall temperature distribution and lower combustion efficiency. This research investigates the combustion characteristics and geometrical configurations on flame stability and combustion efficiency, with a detailed chemical reaction mechanism developed and parametric study conducted. Increasing thermal conductivity coefficient, equivalence ratio, and using a micro-combustor with bluff body are identified as effective ways to improve combustion performance.
major challenge in the development of micro-combustors is flame instabilitiesdresulting in a non uniform wall temperature distribution and lower combustion efficiency. To overcome these issues, this research investigates the combustion characteristics of premixed hydrogen/air mixture in a microcombustor with a cavity, bluff body, rib with bluff body and rib configurations. A detailed chemical reaction mechanism is also developed which consists of 13 species and 19 reactions. The obtained results are validated with published experimental findings. Having the model validated, a parametric study has been conducted to examine the effect of thermal conductivity coefficient, equivalent ratio, aspect ratio and geometrical configurations on heat transfer and combustion characteristics of hydrogen/air flames. It is demonstrated that increasing the thermal conductivity coefficient improves the preheating of the fresh mixture at upstream. However, this causes more heat loss from the outer walls to the surroundings. Moreover, increasing the equivalence ratio of a mixture reduces the negative effects arising from the heat losses on combustion stability. At higher inlet velocities, the location of a maximum temperature shifts towards downstream, which reduces the flame and average wall temperature. Among these configurations, a micro-combustor with bluff body is a more promising option to improve the flame stability and combustion efficiency. (c) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据