4.5 Article

A Genetic Algorithm Approach as a Self-Learning and Optimization Tool for PV Power Simulation and Digital Twinning

期刊

ENERGIES
卷 13, 期 24, 页码 -

出版社

MDPI
DOI: 10.3390/en13246712

关键词

machine learning; genetic algorithms; auto-calibrated algorithms; photovoltaic systems; parameter estimation; digital simulation

资金

  1. Federal Ministry for Economic Affairs and Energy of Germany (BMWi) in the project ALPRO [0324054A]

向作者/读者索取更多资源

A key aspect for achieving a high-accuracy Photovoltaic (PV) power simulation, and reliable digital twins, is a detailed description of the PV system itself. However, such information is not always accurate, complete, or even available. This work presents a novel approach to learn features of unknown PV systems or subsystems using genetic algorithm optimization. Based on measured PV power, this approach learns and optimizes seven PV system parameters: nominal power, tilt and azimuth angles, albedo, irradiance and temperature dependency, and the ratio of nominal module to nominal inverter power (DC/AC ratio). By optimizing these parameters, we create a digital twin that accurately reflects the actual properties and behaviors of the unknown PV systems or subsystems. To develop this approach, on-site measured power, ambient temperature, and satellite-derived irradiance of a PV system located in south-west Germany are used. The approach proposed here achieves a mean bias error of about 10% for nominal power, 3 degrees for azimuth and tilt angles, between 0.01%/C and 0.09%/C for temperature coefficient, and now-casts with an accuracy of around 6%. In summary, we present a new solution to parametrize and simulate PV systems accurately with limited or no previous knowledge of their properties and features.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据