4.6 Article

Theory of coupled ion-electron transfer kinetics

期刊

ELECTROCHIMICA ACTA
卷 367, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2020.137432

关键词

Coupled ion-electron transfer; Ion intercalation; Li-ion batteries; Memristors; Neuromorphic computing

资金

  1. D 3 BATT program of the Toyota Research Institute
  2. Shell International Exploration & Production, Inc.

向作者/读者索取更多资源

The microscopic theory of chemical reactions is based on transition state theory, where coupled ion-electron transfer is developed to facilitate non-adiabatic electron transfer. The general formula of the reaction rate derived in this theory depends on various factors, including overpotential, solvent properties, electronic structure, and ion chemical potential in the transition state. This theory has been successfully applied to Li-ion batteries and accurately predicts the concentration dependence of reaction rates.
The microscopic theory of chemical reactions is based on transition state theory, where atoms or ions transfer classically over an energy barrier, as electrons maintain their ground state. Electron transfer is fundamentally different and occurs by tunneling in response to solvent fluctuations. Here, we develop the theory of coupled ion-electron transfer, in which ions and solvent molecules fluctuate cooperatively to facilitate non-adiabatic electron transfer. We derive a general formula of the reaction rate that depends on the overpotential, solvent properties, the electronic structure of the electron donor/acceptor, and the excess chemical potential of ions in the transition state. For Faradaic reactions, the theory predicts curved Tafel plots with a concentration-dependent reaction-limited current. For moderate overpotentials, our formula reduces to the Butler-Volmer equation and explains its relevance, not only in the well-known limit of large electron-transfer (solvent reorganization) energy, but also in the opposite limit of large iontransfer energy. The rate formula is applied to Li-ion batteries, where reduction of the electrode host material couples with ion insertion. In the case of lithium iron phosphate, the theory accurately predicts the concentration dependence of the exchange current measured by in operando X-Ray microscopy without any adjustable parameters. These results pave the way for interfacial engineering to enhance ion intercalation rates, not only for batteries, but also for ionic separations and neuromorphic computing. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据