4.6 Article

Cobalt-nickel sulfide nanosheets modified by nitrogen-doped porous reduced graphene oxide as high-conductivity cathode materials for supercapacitor

期刊

ELECTROCHIMICA ACTA
卷 362, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2020.137156

关键词

NiCo2S4; Porous nitrogen-doped reduced graphene oxide; Hybrid supercapacitor

资金

  1. Science and Technology Major Project of Guangxi [AA18118001]
  2. Guangxi Innovation Team Project [2019GXNSFGA245005]
  3. Guangxi Key Laboratory of Information Materials Foundation [1910J27-Z]
  4. Guangxi Natural Science Foundation [2017GXNSFBA19/3075]
  5. Directors' Fund of Guangxi Manufacturing Systems and Advanced Manufacturing Technology Laboratory [16-380-12-008Z]

向作者/读者索取更多资源

High conductivity NiCo2S4 (NCS) nanosheets in situ grown in porous nitrogen-doped reduced graphene oxide (PN-rGO) materials were successfully prepared via a simple hydrothermal method. A synergistic effect between the NCS and PN-rGO matrix is observed on the electrochemical performance of the composites. PN-rGO/NCS exhibits an equivalent ultralow diffusion resistance and charge transfer resistance (0.16 Omega), ultrahigh specific capacitance (1,687 F g(-1) at a current density of 0.5 A g(-1)), and an excellent rate capability (1,478 F g(-1) at a current density of 10 A g(-1)). The asymmetric supercapacitor (ASC) is designed with PN-rGO/NCS as the positive electrode and active carbon as the negative electrode. The ASC device exhibits a high capacitance (355.5 F g(-1) at a current density of 1 A g(-1)). Density functional theory calculations show PN-rGO/NCS to increase the electrical conductivity of the material, and concomitantly the electrochemical performance. The data suggest that the PN-rGO/NCS hybrid structure can be considered as a future supercapacitor electrode material. (C) 2020 Published by Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据