4.6 Article

Nanostructures Ni2P/MoP @ N - doping porous carbon for efficient hydrogen evolution over a broad pH range

期刊

ELECTROCHIMICA ACTA
卷 363, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2020.137151

关键词

Porous carbon matrix; Transition metal phosphide; Broad pH range; Phase interface; Hydrogen evolution

资金

  1. Science and Technology Program of Hebei Academy of Sciences [20705, 20706, 201503]

向作者/读者索取更多资源

Given its clean energy and absence of exhaust gases, hydrogen is an ideal candidate for energy demand. Electrochemical hydrogen evolution reaction (HER) have attracted increasing attention, and non-precious metal compounds have been considered as next-generation catalysts to replace the traditional Pt-based catalysts in this reaction. This study adopts a novel sol-gel method of chitosan and formaldehyde to prepare an N-doped carbon matrix with Nickel phosphide (Ni2P) and Molybdenum phosphide (MoP) loading. Phytic acid is used as the P source to dissolve chitosan. The interface between Ni2P and MoP in the as-prepared catalysts facilitates HER with an excellent stability in a wide pH universal solution. The onset potentials of the catalyst are 300, 200, and 5 mV in 0.5 mol L-1 sulfuric acid, 1.0 mol L-1 phosphate buffer solution, and 1.0 mol L-1 potassium hydroxide, respectively, and the corresponding Tafel slopes are 63, 99, and 64 mV dec(-1). Density functional theory is adopted to support the experiment. Results suggest that the synergistic effect from the interface can obviously reduce the hydrogen adsorption free energy to benefit the adsorption/desorption. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据