4.6 Article

The near-optimal feasible space of a renewable power system model

期刊

ELECTRIC POWER SYSTEMS RESEARCH
卷 190, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.epsr.2020.106690

关键词

power system modeling; power system economics; optimization; sensitivity analysis; modeling to generate alternatives

资金

  1. Helmholtz Association [VH-NG-1352]

向作者/读者索取更多资源

Models for long-term investment planning in the power system typically return a single optimal solution based on cost assumptions, but there are often many near-optimal alternatives. Understanding common features across cost-effective alternatives can enhance policy advice and acknowledge uncertainties in the model structure.
Models for long-term investment planning of the power system typically return a single optimal solution per set of cost assumptions. However, typically there are many near-optimal alternatives that stand out due to other attractive properties like social acceptance. Understanding features that persist across many cost-efficient alternatives enhances policy advice and acknowledges structural model uncertainties. We apply the modeling-to generate-alternatives (MGA) methodology to systematically explore the near-optimal feasible space of a completely renewable European electricity system model. While accounting for complex spatio-temporal patterns, we allow simultaneous capacity expansion of generation, storage and transmission infrastructure subject to linearized multi-period optimal power flow. Many similarly costly, but technologically diverse solutions exist. Already a cost deviation of 0.5% offers a large range of possible investments. However, either offshore or onshore wind energy along with some hydrogen storage and transmission network reinforcement appear essential to keep costs within 10% of the optimum.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据