4.7 Article

Acoustic complexity indices reveal the acoustic communities of the old-growth Mediterranean forest of Sasso Fratino Integral Natural Reserve (Central Italy)

期刊

ECOLOGICAL INDICATORS
卷 120, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.ecolind.2020.106927

关键词

Acoustic signature; Acoustic events; Acoustic signature dissimilarity; Fractal dimension; Old-growth Mediterranean forest

资金

  1. French National Centre for Scientific Research (CNRS)

向作者/读者索取更多资源

The study describes the acoustic landscapes of different locations in the Sasso Fratino Integral Natural Reserve in Central Italy, revealing specific ecological routines and patterns of acoustic activity among soniferous species. By processing recordings and calculating new indices, the study provides a novel tool to interpret and analyze the complexity of acoustic patterns within the old-growth forest.
The Sasso Fratino Integral Natural Reserve (Central Italy), a rare example of climax Mediterranean forest, provides an extraordinary opportunity to create an important soundscape reference of old-growth forest. In this study, we describe the soundscape of three localities (Lama, Sasso 950, Sasso 1400) representative of a gradient of variety and complexity of habitats, recorded during the period 10 May to 9 June 2017. Our results reveal temporal partitioning into acoustically homogeneous periods across 24 h suggesting that soniferous species (mainly birds) adopt ecological routines in which their acoustic activity is organized according to specific transient physiological needs. We processed multi-temporal aggregates of 1, 5, 10, and 15 s recordings and calculated the Acoustic Signature (AS) with four new indices: Ecoacoustic Events (EE), Acoustic Signature Dissimilarity (ASD), and their fractal dimensions (DEE and DASD), derived from the Acoustic Complexity Index (ACI). The use of the EE and ASD greatly improved the AS interpretation, adding further details such as the emergence of a clear sequence of patterns consistent with the daily evolution of the overall soundscape. DEE and DASD confirm the patterns observed using the AS, but provide more clarity and detail about the great acoustic complexity that exists across temporal scales in this old-growth forest. The temporal turnover of different acoustic communities occurs as a result of a gradual shift of different homogenous acoustic properties. We conclude that soniferous species use distinct, species-specific temporal resolutions according to their physiological and ecological needs and that the fractal approach used here provides a novel tool to overcome the difficulties associated with describing multi-temporal acoustic patterns.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据