4.4 Article

Functional Characterization of 40 CYP3A4 Variants by Assessing Midazolam 1′-Hydroxylation and Testosterone 6β-Hydroxylation

期刊

DRUG METABOLISM AND DISPOSITION
卷 49, 期 3, 页码 212-220

出版社

AMER SOC PHARMACOLOGY EXPERIMENTAL THERAPEUTICS
DOI: 10.1124/dmd.120.000261

关键词

-

资金

  1. Japan Agency for Medical Research and Development (AMED) [20kk0305009]
  2. Takahashi Industrial and Economic Research Foundation
  3. Smoking Research Foundation
  4. Japan Society for the Promotion of Science [19J10744]
  5. Pharmaceutical Society of Japan [N-170603]
  6. AMED [JP20km0105001, JP20km0105002]
  7. Tohoku Medical Megabank Project: Promoting Public Utilization of Advanced Research Infrastructure
  8. Sharing and Administrative Network for Research Equipment - Ministry of Education, Culture, Sports, Science and Technology (MEXT)
  9. Facilitation of R&D Platform for AMED Genome Medicine Support from AMED [JP20km0405001]
  10. Grants-in-Aid for Scientific Research [19J10744] Funding Source: KAKEN

向作者/读者索取更多资源

CYP3A4 is a key enzyme involved in drug metabolism, with variations in its activity leading to interindividual differences in drug efficacy and adverse effects. This study identified new CYP3A4 variants in Japanese individuals and assessed their enzymatic activities, providing insights into the mechanisms underlying differences in CYP3A4-dependent drug metabolism.
CYP3A4 is among the most abundant liver and intestinal drug-metabolizing cytochrome P450 enzymes, contributing to the metabolism of more than 30% of clinically used drugs. Therefore, interindividual variability in CYP3A4 activity is a frequent cause of reduced drug efficacy and adverse effects. In this study, we characterized wild-type CYP3A4 and 40 CYP3A4 variants, including 11 new variants, detected among 4773 Japanese individuals by assessing CYP3A4 enzymatic activities for two representative substrates (midazolam and testosterone). The reduced carbon monoxide-difference spectra of wild-type CYP3A4 and 31 CYP3A4 variants produced with our established mammalian cell expression system were determined by measuring the increase in maximum absorption at 450 nm after carbon monoxide treatment. The kinetic parameters of midazolam and testosterone hydroxylation by wild-type CYP3A4 and 29 CYP3A4 variants (K-m, k(cat), and catalytic efficiency) were determined, and the causes of their kinetic differences were evaluated by three-dimensional structural modeling. Our findings offer insight into the mechanism underlying interindividual differences in CYP3A4-dependent drug metabolism. Moreover, our results provide guidance for improving drug administration protocols by considering the information on CYP3A4 genetic polymorphisms. SIGNIFICANCE STATEMENT CYP3A4 metabolizes more than 30% of clinically used drugs. Interindividual differences in drug efficacy and adverse-effect rates have been linked to ethnicity-specific differences in CYP3A4 gene variants in Asian populations, including Japanese individuals, indicating the presence of CYP3A4 polymorphisms resulting in the increased expression of loss-of-function variants. This study detected alterations in CYP3A4 activity due to amino acid substitutions by assessing the enzymatic activities of coding variants for two representative CYP3A4 substrates.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据