4.6 Article

Multi-band and high-sensitivity perfect absorber based on monolayer graphene metamaterial

期刊

DIAMOND AND RELATED MATERIALS
卷 111, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.diamond.2020.108227

关键词

Perfect absorption; Graphene; Metamaterial; Near infrared; Critical coupling

资金

  1. National Natural Science Foundation of China [51606158, 11604311, 61705204, 21506257]
  2. Scientific Research Fund of Sichuan Provincial Department of Science and Technology [2020YJ0137, 2020YFG0467]
  3. Undergraduate Innovation Fund Project Precision Funding by Southwest University of Science and Technology [JZ20-025]
  4. Southwest University of Science and Technology [18ycx034]
  5. Southwest University of Science and Technology Students Innovation Fund project [CX20-031]

向作者/读者索取更多资源

This study utilizes the Finite Difference Time Domain (FDTD) method to simulate a multi-band ideal absorber and proposes a new method based on critical coupling and guided resonance. The physical mechanism is analyzed through impedance matching and coupled mode theory (CMT). By adjusting the geometric parameters of the structure, the spectral position and absorption rate of the absorption peak can be tuned.
The Finite Difference Time Domain (FDTD) method is used for the simulation, and a new method based on critical coupling and guided resonance is proposed theoretically and numerically to realize a multi-band ideal absorber (PA) of monolayer graphene. Its physical mechanism can be more perfectly analyzed through impedance matching and coupled mode theory (CMT). Due to the guided resonance (100% transmission or reflection efficiency is obtained through the coupling of the leakage mode and the guided mode under the phase matching condition), the perfect absorber can obtain four perfect absorption peaks. The resonance wavelengths are located at lambda(1) = 1085.03 nm, lambda(2) = 1131.48 nm, lambda(3) = 1187 nm and lambda(4) = 1365.35 nm, respectively. Their absorption rates are 95.88%, 99.81%, 97.44% and 95.30%. At the same time, we can also see a phenomenon in which the spectral position and value of the absorption peak can be adjusted by changing the relevant geometric parameters in the system (the geometric size, period, and incident angle of the hexagonal air hole absorber). Meanwhile, the structure we designed has certain advantages in the field of similar absorber research by briefly calculating related values of sensing performance. The sensitivity of its four resonance peaks are 46.45, 94.35, 151 and 598.9 nm/RIU, and FOM are 5.445, 11.192, 19.895 and 85.680. So we believe that the research has huge application prospects in terms of sensors, tunable spectrum detection, environmental monitoring and medical diagnosis, modulators and optoelectronic device sensors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据