4.7 Article

Sacrificial coating development for biofouling control in membrane systems

期刊

DESALINATION
卷 496, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.desal.2020.114650

关键词

Polyelectrolyte coating; Biofouling control; Reverse osmosis

资金

  1. King Abdullah University of Science and Technology (KAUST)

向作者/读者索取更多资源

Current cleaning strategies for biofouling control on spiral wound membrane systems used for seawater desalination are not effective and can hinder long-term membrane performance. To enable effective cleaning of a membrane, we examined the in-situ application and the use of a sacrificial multilayer polyelectrolyte coating on the membrane surface. The membrane coating was based on a layer-by-layer assembly approach using two nontoxic linkers, poly (diallyl-dimethyl ammonium chloride) and poly(sodium-4-styrene sulfonate). This polyelectrolyte coating was effectively applied on the membrane surface under cross-flow conditions, and it was stable on the membrane surface under continuous operation. Coating removal requires only a concentrated sodium chloride solution (synthetic brine in our study) adjusted to pH 11. Using this procedure, both the biofilm and the sacrificial layer could be simultaneously removed, leaving a clean surface compared to the non-coated membrane. Biofouling tests showed that the coated membrane had two-fold higher permeate flux recovery than the control non-coated membrane. The used polyelectrolyte sacrificial coatings avoided the use of toxic linkers and harsh cleaning chemicals, and thus it is a suitable technique for biofouling control on reverse osmosis spiral wound membranes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据