4.5 Article

Storm-induced hydrodynamic changes and seabed erosion in the littoral area of Yellow River Delta: A model-guided mechanism study

期刊

CONTINENTAL SHELF RESEARCH
卷 205, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.csr.2020.104171

关键词

Yellow river delta; Storms; Tidal shear front; Sediment transport; Seabed erosion; Morphodynamics

资金

  1. National Key Research and Development Program of China [2017YFC0405503]
  2. National Natural Science Foundation of China [U1706214]
  3. Open Research Fund of SKLEC [SKLEC-PGKF201903]

向作者/读者索取更多资源

Morphological evolution of large river deltas is highly vulnerable to extreme storm events due to insufficient sediment supply. As an abandoned delta lobe, the coasts along the northern Yellow River Delta (YRD) and Gudong Oil Field have recently suffered serious erosion due to extreme storm events and become increasingly vulnerable. In this study, a well validated and tested Delft 3D module by the observing hydrodynamic and sediment data to simulate the hydrodynamics and seabed erosion during a storm event in the littoral area of YRD. Observed wave, current and sediment data under both fair-weather and storm conditions were collected in the study area and used to validate the model. The results indicated that the model can reproduce well the hydrodynamic and sediment transport processes. A series of numerical experiments were carried out to examine the hydrodynamic changes and sediment transports. In the numerical experiment of normal condition, there is hardly any sediment transport off the YRD. The numerical experiment of storm condition showed that storms enhanced tidal residual currents, weakened tidal shear front, and significant wave heights up to 2 m, considerably intensified the sediment resuspension and dispersal. The local sediment resuspension due to the increased wave-induced bottom stress promoted the sediment plume to expand to the central area of Laizhou Bay, which seemed to provide sediment source for offshore and southward transport. During the storm, the active nearshore sediment resuspension provided sediment source for offshore and southward transport. The intensive dynamics and sediment transport under storm conditions caused significant changes in seabed erosion and siltation. The main erosion occurred off the Gudong and northern YRD, while the main siltation appeared in the central area of Laizhou Bay. No significant recovery after a storm and frequent strong winds have an accumulative effect on the erosion, which is very likely to dominate the erosive states of the YRD coast in the future.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据