4.7 Article

Efficient machine learning models for prediction of concrete strengths

期刊

CONSTRUCTION AND BUILDING MATERIALS
卷 266, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.conbuildmat.2020.120950

关键词

High performance concrete; Ensemble learning; Support vector machine; Multi-layer Perceptron; Tree-based algorithms

向作者/读者索取更多资源

An efficient implementation of machine learning models for predicting compressive and tensile strengths of high-performance concrete was presented in this study, with GBR and XGBoost models showing better performance compared to SVR and MLP.
In this study, an efficient implementation of machine learning models to predict compressive and tensile strengths of high-performance concrete (HPC) is presented. Four predictive algorithms including support vector regression (SVR), multilayer perceptron (MLP), gradient boosting regressor (GBR), and extreme gradient boosting (XGBoost) are employed. The process of hyperparameter tuning is based on random search that results in trained models with better predictive performances. In addition, the missing data is handled by filling with the mean of the available data which allows more information to be used in the training process. The results on two popular datasets of compressive and tensile strengths of high performance concrete show significant improvement of the current approach in terms of both prediction accuracy and computational effort. The comparative studies reveal that, for this particular prediction problem, the trained models based on GBR and XGBoost perform better than those of SVR and MLP. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据