4.7 Article

Electromagnetic wave absorption performance of magnesium phosphate cement functionalized by nano-Fe3O4 magnetic fluid and hollow glass microspheres

期刊

CONSTRUCTION AND BUILDING MATERIALS
卷 265, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.conbuildmat.2020.120771

关键词

Electromagnetic radiation; Nano-Fe3O4 magnetic fluid; Hollow glass microspheres (HGM); Magnesium phosphate cement (MPC); Electromagnetic wave absorption; performance (EWAP)

资金

  1. National Natural Science Foundation of China [51627812, 51908182]
  2. Natural Science Foundation of Hebei [E2020202043]
  3. Natural Science Foundation of Tianjin [18JCZDJC39300]

向作者/读者索取更多资源

In light of high bonding and early strengths, magnesium phosphate cement (MPC) functionalized with nano-Fe3O4 magnetic fluid and hollow glass microspheres (HGM) that exhibited excellent electromagnetic wave absorption performance (EWAP) was fabricated in this study. Coating a construction surface with multifunctional MPC could effectively withstand electromagnetic radiation hazards. Effects of the Fe3O4-like ferrite content and type (i.e., nano-Fe3O4 magnetic fluid, nano-Fe3O4 particles and magnetite), and the surface roughness of specimens on the EWAP of the MPC were investigated by lab tests. Test results showed that the Fe3O4-like ferrite greatly improved the EWAP of the MPC and the enhancement effectiveness was in descending order of nano-Fe3O4 magnetic fluid > nano-Fe3O4 particles > magnetite. Among the samples tested in this study, MPC blended with 5 wt% nano-Fe3O4 magnetic fluid showed an optimal EWAP as indicated by a peak reflection loss of -11.2 dB and bandwidth of 9.67 GHz below -10 dB. Additionally, the reflection loss of the MPC in the high frequency range could be further improved by carving notches on the surface to increase the number of microwave reflections. The electromagnetic energy absorbing mechanism and the hydration progress of the MPC were further analyzed with SEM/EDS and XRD results. The hydration degree of the MPC got improved due to the lubricating effect of HGM and filling effect of nano-Fe3O4 magnetic fluid, which also optimized its micro structure and compressive and flexural strengths. From this study, the nano-Fe3O4 magnetic fluid and HGM modified MPC had potential application in the construction of buildings for enhanced resistance to electromagnetic radiation. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据