4.7 Review

A scoping review of transfer learning research on medical image analysis using ImageNet

期刊

COMPUTERS IN BIOLOGY AND MEDICINE
卷 128, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.compbiomed.2020.104115

关键词

Medical imaging; Transfer learning; Convolutional neural network; ImageNet

向作者/读者索取更多资源

This study reviewed the application of transfer learning with convolutional neural networks in medical image analysis, identifying the most common anatomical areas studied and the use of different models for analysis in different anatomical areas. Findings can guide future research approaches and highlight research gaps in the field.
Objective: Employing transfer learning (TL) with convolutional neural networks (CNNs), well-trained on non-medical ImageNet dataset, has shown promising results for medical image analysis in recent years. We aimed to conduct a scoping review to identify these studies and summarize their characteristics in terms of the problem description, input, methodology, and outcome. Materials and methods: To identify relevant studies, MEDLINE, IEEE, and ACM digital library were searched for studies published between June 1st, 2012 and January 2nd, 2020. Two investigators independently reviewed articles to determine eligibility and to extract data according to a study protocol defined a priori. Results: After screening of 8421 articles, 102 met the inclusion criteria. Of 22 anatomical areas, eye (18%), breast (14%), and brain (12%) were the most commonly studied. Data augmentation was performed in 72% of fine-tuning TL studies versus 15% of the feature-extracting TL studies. Inception models were the most commonly used in breast related studies (50%), while VGGNet was the common in eye (44%), skin (50%) and tooth (57%) studies. AlexNet for brain (42%) and DenseNet for lung studies (38%) were the most frequently used models. Inception models were the most frequently used for studies that analyzed ultrasound (55%), endoscopy (57%), and skeletal system X-rays (57%). VGGNet was the most common for fundus (42%) and optical coherence tomography images (50%). AlexNet was the most frequent model for brain MRIs (36%) and breast X-Rays (50%). 35% of the studies compared their model with other well-trained CNN models and 33% of them provided visualization for interpretation. Discussion: This study identified the most prevalent tracks of implementation in the literature for data preparation, methodology selection and output evaluation for various medical image analysis tasks. Also, we identified several critical research gaps existing in the TL studies on medical image analysis. The findings of this scoping review can be used in future TL studies to guide the selection of appropriate research approaches, as well as identify research gaps and opportunities for innovation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据