4.7 Article

The effect of airway motion and breathing phase during imaging on CFD simulations of respiratory airflow

期刊

COMPUTERS IN BIOLOGY AND MEDICINE
卷 127, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.compbiomed.2020.104099

关键词

Airway CFD; Respiratory airflow; Airway motion; UTE MRI; Unsteady; Trachea

资金

  1. National Institutes of Health (NIH) [R01 HL146689]

向作者/读者索取更多资源

Rationale: Computational fluid dynamics (CFD) simulations of respiratory airflow can quantify clinically useful information that cannot be obtained directly, such as the work of breathing (WOB), resistance to airflow, and pressure loss. However, patient-specific CFD simulations are often based on medical imaging that does not capture airway motion and thus may not represent true physiology, directly affecting those measurements. Objectives: To quantify the variation of respiratory airflow metrics obtained from static models of airway anatomy at several respiratory phases, temporally averaged airway anatomies, and dynamic models that incorporate physiological motion. Methods: Neonatal airway images were acquired during free-breathing using 3D high-resolution MRI and reconstructed at several respiratory phases in two healthy subjects and two with airway disease (tracheomalacia). For each subject, five static (end expiration, peak inspiration, end inspiration, peak expiration, averaged) and one dynamic CFD simulations were performed. WOB, airway resistance, and pressure loss across the trachea were obtained for each static simulation and compared with the dynamic simulation results. Results: Large differences were found in the airflow variables between the static simulations at various respiratory phases and the dynamic simulation. Depending on the static airway model used, WOB, resistance, and pressure loss varied up to 237%, 200%, and 94% compared to the dynamic simulation respectively. Conclusions: Changes in tracheal size and shape throughout the breathing cycle directly affect respiratory airflow dynamics and breathing effort. Simulations incorporating realistic airway wall dynamics most closely represent airway physiology; if limited to static simulations, the airway geometry must be obtained during the respiratory phase of interest for a given pathology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据