4.7 Article

Open, Programmable, and Virtualized 5G Networks: State-of-the-Art and the Road Ahead

期刊

COMPUTER NETWORKS
卷 182, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.comnet.2020.107516

关键词

Software-defined Networking; 5G; Open Source; Network Function Virtualization; O-RAN; ONAP

资金

  1. US National Science Foundation [CNS-1618727]
  2. US Office of Naval Research [N00014-19-1-2409, N00014 20-1-2132]

向作者/读者索取更多资源

Fifth generation (5G) cellular networks will serve a wide variety of heterogeneous use cases, including mobile broadband users, ultra-low latency services and massively dense connectivity scenarios. The resulting diverse communication requirements will demand networking with unprecedented flexibility, not currently provided by the monolithic black-box approach of 4G cellular networks. The research community and an increasing number of standardization bodies and industry coalitions have recognized softwarization, virtualization, and disaggregation of networking functionalities as the key enablers of the needed shift to flexibility. Particularly, software-defined cellular networks are heralded as the prime technology to satisfy the new application-driven traffic requirements and to support the highly time-varying topology and interference dynamics, because of their openness through well-defined interfaces, and programmability, for swift and responsive network optimization. Leading the technological innovation in this direction, several 5G software-based projects and alliances have embraced the open source approach, making new libraries and frameworks available to the wireless community. This race to open source softwarization, however, has led to a deluge of solutions whose interoperability and interactions are often unclear. This article provides the first cohesive and exhaustive compendium of recent open source software and frameworks for 5G cellular networks, with a full stack and end-to-end perspective. We detail their capabilities and functionalities focusing on how their constituting elements fit the 5G ecosystem, and unravel the interactions among the surveyed solutions. Finally, we review hardware and testbeds on which these frameworks can run, and provide a critical perspective on the limitations of the state-of-the-art, as well as feasible directions toward fully open source, programmable 5G networks.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据