4.7 Article

Synergies of vertical graphene and manganese dioxide in enhancing the energy density of carbon fibre-based structural supercapacitors

期刊

COMPOSITES SCIENCE AND TECHNOLOGY
卷 201, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.compscitech.2020.108568

关键词

Structural supercapacitor; Vertical graphene; Manganese dioxide; Synergistic effect; Multifunctional composites

资金

  1. University of New South Wales

向作者/读者索取更多资源

The study introduces a technique for increasing the capacitance of carbon fiber electrodes by hybridizing VG and MnO2, resulting in enhanced areal capacitance. The structural supercapacitor exhibits high energy density and mechanical properties, paving the way for the development of high-performance carbon fiber multifunctional composites.
Structural supercapacitor is a promising solution for reducing the overall weight of electric vehicles. To maximum the energy storage capacity of a load-carrying structure, we present a technique to create carbon fibre (CF) electrodes modified with vertical graphene (VG) and manganese dioxide (MnO2). The results show that the hybridisation of VG and MnO2 generates a significant synergistic effect in increasing the areal capacitance of electrode. This synergistic effect is attributed to the dual effects of VG in increasing effective surface area and the electrical conductivity, which enable a better distribution of MnO2 as well as a highly conductive network. A structural supercapacitor, based on the CF/VG/MnO2 hybrid electrode and a polymer electrolyte, exhibits an areal capacitance of 30.7 mF/cm(2), energy density of 12.2 mW h/kg, and power density of 2210.3 mW/kg. Moreover, mechanical characterisations demonstrate a tensile strength of 86 MPa and a flexural strength of 32 MPa for this structural supercapacitor. The high electrical energy density and mechanical properties of this supercapacitor pave a way of developing advanced carbon fibre multifunctional composites with excellent structural performance and energy storage capability.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据