4.7 Article

Reliability-based buckling optimization with an accelerated Kriging metamodel for filament-wound variable angle tow composite cylinders

期刊

COMPOSITE STRUCTURES
卷 254, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.compstruct.2020.112821

关键词

Reliability-based optimization; Uncertainty quantification; Metamodeling; Kriging; Buckling; Filament winding

资金

  1. CAPES
  2. CSC (China Scholarship Council)

向作者/读者索取更多资源

A reliability-based optimization framework is introduced and used to design filament-wound cylindrical shells with variable angle tow. Seven design cases are investigated to enable a comparison between constant-stiffness and variable angle tow designs, also considering effects of thickness variation created due to overlapping tow paths, determined using the kinematics of the filament winding manufacturing process. The uncertainty in the winding angle is considered in the optimization by means of metamodels constructed using the Kriging method. Moving search windows are incorporated into the Kriging metamodel to accelerate its convergence by reducing the number of training iterations. The results prove the efficacy of the proposed framework and clearly demonstrate the advantage of variable-stiffness designs over conventional ones for achieving a maximum load carrying capacity, while keeping the robustness of the design towards manufacturing uncertainties.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据