4.7 Article

Elastic properties of injection molded short glass fiber reinforced thermoplastic composites

期刊

COMPOSITE STRUCTURES
卷 254, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.compstruct.2020.112850

关键词

Short fiber; Fiber orientation; Finite element method; Representative volume element

向作者/读者索取更多资源

Depending on fiber size and volume fraction, polymer matrix type, processing temperature, injection speed, etc., short fiber reinforced composites produced by injection molding may exhibit complex fiber concentration, orientation and length distributions at different locations, causing large variations in their mechanical properties. In this work, a representative volume element (RVE) scheme is developed to describe the elastic properties of short glass fiber reinforced PA6,6 composites produced by injection molding. In the RVE formulation, fiber length is assumed to follow a two-parameter Weibull distribution, and a new concept, namely preferential angle, is introduced to account for the preferential alignment of fibers at different locations of injection molded composites. A random sequential insertion algorithm is developed to implement the fiber length distribution and fiber preferential alignment, and finite element method (FEM) is employed to analyze the relations of the elastic properties of RVE with three parameters, that is, the mean length, volume fraction and preferential angle of the fibers. Based on the FEM results, quantitative formulas for these relations are obtained. It is found that the variations in the mean length, volume fraction, and preferential angle of the fibers can cause large variations in elastic moduli and elastic anisotropy of the RVE.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据