4.7 Article

Mechanical and electrical properties of Cu-Steel bimetallic porous composite with a double-helix entangled structure

期刊

COMPOSITE STRUCTURES
卷 255, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.compstruct.2020.112886

关键词

Bimetallic porous composite; Mechanical property; Electrical performance; Weight ratio; Double-helix entangled structure

资金

  1. National Natural Science Foundation of China [51705080]
  2. Natural Science Foundation of Fujian Province [2018J01764]

向作者/读者索取更多资源

The weight ratio of copper/steel in the bimetallic porous composite significantly affects the mechanical and electrical performance of the material, showing a non-proportional relationship over a range of displacement. During compression, the contact between internal bimetallic wires leads to nonlinearity in resistance-force curves.
Cu-steel bimetallic porous composite structures can be used as lightweight, damping, and electro-conductive elements in critical environments where traditional single materials become ineffective. In the present work, a novel Cu-steel bimetallic porous composite with a double-helix entangled structure was developed. The mechanical properties (static stiffness, loss factor, and tangent modulus) of the as-synthesized composite were characterized by compressive tests, and its electrical sensitivity to compressive force was examined by mechanical-electrical coupling tests. The effect of the copper/steel weight ratio on mechanical and electrical performances was analyzed in detail. It is found that the Cu-steel bimetallic porous composite with a relatively high weight ratio has a larger average loss factor and lower stiffness than that with a low weight ratio. The structural characteristics and complex microstructural changes of the deformed specimen allow the tangent modulus and stiffness to exhibit a non-proportional relationship with the weight ratio over a range of displacement. The resistance-force curves exhibit an obvious nonlinearity and degradation due to the contact between internal bimetallic wires. The resistance-stiffness history reveals that the mitigation of electrical conductivity continued with the enlargement of stiffness and weight ratio.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据